Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 5(11): 9612-9619, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37970530

RESUMO

In the present work, we demonstrate the formation of oxide porous and nanodot structures from the same block copolymer (BCP) by the phase inversion of a BCP template. We investigated the effect of solvent annealing time on the ordering of asymmetric, cylinder forming, polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) BCP. Phase separation of PS-b-P4VP was achieved by solvent vapor annealing (SVA) in a solvent atmosphere that is (partially) selective to P4VP to initially generate hexagonally arranged, cylindrical arrays of the expected structure. The morphology of the BCP changed from P4VP hexagonally packed cylinders to an 'inverse' structure with PS cylinders embedded in a P4VP matrix. This suggests that selective swelling occurs over time such that the swollen P4VP phase becomes the majority volume component. Metal ions (Ga3+, In3+) were infiltrated into the BCP templates by a solution-mediated infiltration approach, followed by an ultraviolet-ozone treatment to remove the polymer and oxidize the metallic ions to their oxides. The findings show that a single BCP can be used to create both metal oxide arrays and porous structures of metal oxides by simply varying the duration of the solvent annealing process. The resulting structures were analyzed through several methods including scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, and energy-dispersive X-ray spectroscopy. XPS analyses confirmed the complete elimination of the BCP template and the presence of metal oxides. This study provides important insights into the development of functional BCP materials with inverse structures.

2.
Int J Biol Macromol ; 209(Pt B): 2109-2118, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513089

RESUMO

This study introduces a new 3D scaffold based on thiolated chitosans with luminescence by microwave radiation using cysteine (Chi_CT_Cys) and 11-mercaptoundecanoic acid (Chi_CT_MUA) for vertebral disc regeneration/theragnostic. These scaffolds were characterized by Raman, PL spectroscopy, swelling, gel-fraction, and morphologies. Cytocompatibility and mechanical behavior were evaluated. Raman showed that disulfide bonds improved the grafting degree (Chi_CT_Cys (1072 ± 136) µmol·g-1 and Chi_CT_MUA (3245 ± 105) µmol·g-1). Morphologies showed interesting characteristics. Swelling behavior showed that Chi_CT_MUA presented a slight minor swelling (2101 ± 251) % compared to Chi_CT_Cys (2589 ± 188) %. Differently, gel-fraction showed that the chemical stability of Chi_CT_Cys was worse (29 ± 4) % than Chi_CT_MUA (15 ± 3) %. PL showed a possibility to use theragnostic evaluation of points of greater compression in a vertebral disc. The mechanical behavior of Chi_CT_MUA presented better results ((70 ± 3) MPa) than Chi_CT_Cys ((37 ± 3) MPa). Cytocompatible showed that the scaffolds presented cell viability >90%. Thusly, these 3D scaffolds presented an incredible potential for tissue engineering applications.


Assuntos
Quitosana , Micro-Ondas , Quitosana/química , Cisteína/química , Luminescência , Compostos de Sulfidrila/química , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...