Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38797497

RESUMO

PURPOSE: Despite a rise in clinical use of radiopharmaceutical therapies, the biological effects of radionuclides and their relationship with absorbed radiation dose are poorly understood. Here, we set out to define this relationship for Auger electron-emitters [99mTc]TcO4 and [123I]I, and ß--particle-emitter [188Re]ReO4. Studies were carried out using genetically-modified cells that permitted direct radionuclide comparisons. METHODS AND MATERIALS: Triple-negative MDA-MB-231 breast cancer cells, expressing the human sodium/iodide symporter (hNIS) and green fluorescent protein (GFP; MDA-MB-231.hNIS-GFP) were used. In vitro radiotoxicity of [99mTc]TcO4, [123I]I and [188Re]ReO4 was determined using clonogenic assays. Radionuclide uptake, efflux, and subcellular location were used to calculate nuclear-absorbed doses using the Medical Internal Radiation Dose formalism. In vivo studies were performed using female NSG mice bearing orthotopic MDA-MB-231.hNIS-GFP tumors and compared to X-ray-treated (12.6-15 Gy) and untreated cohorts. Absorbed dose per unit activity in tumors and NIS-expressing organs were extrapolated to reference human adult models using OLINDA/EXM®. RESULTS: [99mTc]TcO4- and [123I]I reduced the survival fraction only in hNIS-expressing cells, whereas [188Re]ReO4 reduced survival fraction in hNIS-expressing and parental cells. [123I]I required 2.4-fold and 1.5-fold lower decays/cell to achieve 37% survival compared to [99mTc]TcO4- and [188Re]ReO4, respectively, following 72 hours incubation. Additionally, [99mTc]TcO4-, [123I]I and [188Re]ReO4 had superior cell killing effectiveness in vitro compared to X-rays. In vivo, X-ray led to a greater median survival compared to [188Re]ReO4 and [123I]I (54 days versus 45 and 43 days, respectively). Unlike the X-ray cohort, no metastases were visualized in the radionuclide-treated cohorts. Extrapolated human absorbed doses of [188Re]ReO4 to a 1 g tumor were 13.8-fold and 11.2-fold greater than for [123I]I in female and male models, respectively. CONCLUSIONS: This work reports reference dose-effect data using cell and tumor models for [99mTc]TcO4, [123I]I, and [188Re]ReO4, for the first time. We further demonstrate the tumor controlling effects of [123I]I, and [188Re]ReO4 in comparison to EBRT.

2.
Nat Nanotechnol ; 19(5): 668-676, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242986

RESUMO

Positron emission particle tracking (PEPT) enables 3D localization and tracking of single positron-emitting radiolabelled particles with high spatiotemporal resolution. The translation of PEPT to the biomedical imaging field has been limited due to the lack of methods to radiolabel biocompatible particles with sufficient specific activity and protocols to isolate a single particle in the sub-micrometre size range, below the threshold for capillary embolization. Here we report two key developments: the synthesis and 68Ga-radiolabelling of homogeneous silica particles of 950 nm diameter with unprecedented specific activities (2.1 ± 1.4 kBq per particle), and the isolation and manipulation of a single particle. We have combined these developments to perform in vivo PEPT and dynamic positron emission tomography (PET) imaging of a single radiolabelled sub-micrometre size particle using a pre-clinical positron emission tomography/computed tomography scanner. This work opens possibilities for quantitative assessment of haemodynamics in vivo in real time, at the whole-body level using minimal amounts of injected radioactive dose and material.


Assuntos
Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Gálio/química , Camundongos , Dióxido de Silício/química , Tamanho da Partícula , Nanopartículas/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
3.
IEEE Trans Radiat Plasma Med Sci ; 7(5): 473-482, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38292296

RESUMO

Resolution recovery (RR) techniques in positron emission tomography (PET) imaging aim to mitigate spatial resolution losses and related inaccuracies in quantification by using a model of the system's point spread function (PSF) during reconstruction or post-processing. However, including PSF modeling in fully 3-D image reconstruction is far from trivial as access to the scanner-specific forward and back-projectors is required, along with access to the 3-D sinogram data. Hence, post-reconstruction RR methods, such as the Richardson-Lucy (RL) algorithm, can be more practical. However, the RL method leads to relatively rapid noise amplification in early image iterations, giving inferior image quality compared to iterates obtained by placing the PSF model in the reconstruction algorithm. We propose a post-reconstruction RR method by synthesizing PET data by a forward projection of an initial real data reconstruction (such reconstructions are usually available via a scanner's standard reconstruction software). The synthetic PET data are then used to reconstruct an image, but crucially now including a modeled PSF within the system model used during reconstruction. Results from simulations and real data demonstrate the proposed method improves image quality compared to the RL algorithm, whilst avoiding the need for scanner-specific projectors and raw sinogram data (as required by standard PSF modeling within reconstruction).

4.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34476245

RESUMO

RATIONALE: COPD and smoking are characterised by pulmonary inflammation. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) imaging may improve knowledge of pulmonary inflammation in COPD patients and aid early development of novel therapies as an imaging biomarker. OBJECTIVES: To evaluate pulmonary inflammation, assessed by FDG uptake, in whole and regional lung in "usual" (smoking-related) COPD patients, alpha-1 antitrypsin deficiency (α1ATD) COPD patients, smokers without COPD and never-smokers using FDG PET/CT. Secondly, to explore cross-sectional associations between FDG PET/CT and systemic inflammatory markers in COPD patients and repeatability of the technique in COPD patients. METHODS: Data from two imaging studies were evaluated. Pulmonary FDG uptake (normalised Ki; nKi) was measured by Patlak graphical analysis in four subject groups: 84 COPD patients, 11 α1ATD-COPD patients, 12 smokers and 10 never-smokers. Within the COPD group, associations between nKi and systemic markers of inflammation were assessed. Repeatability was evaluated in 32 COPD patients comparing nKi values at baseline and at 4-month follow-up. RESULTS: COPD patients, α1ATD-COPD patients and smokers had increased whole lung FDG uptake (nKi) compared with never-smokers (0.0037±0.001, 0.0040±0.001, 0.0040±0.001 versus 0.0028±0.001 mL·cm-3·min-1, respectively, p<0.05 for all). Similar results were observed in upper and middle lung regions. In COPD participants, plasma fibrinogen was associated with whole lung nKi (ß=0.30, p=0.02) in multivariate analysis adjusted for current smoking, forced expiratory volume in 1 s % predicted, systemic neutrophils and C-reactive protein levels. Mean percentage difference in nKi between the baseline and follow-up was 3.2%, and the within subject coefficient of variability was 7.7%. CONCLUSIONS: FDG PET/CT has potential as a noninvasive tool to enable whole lung and regional quantification of FDG uptake to assess smoking- and COPD-related pulmonary inflammation.

5.
J Nucl Med ; 61(12): 1701-1707, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32948678

RESUMO

PET with 18F-FDG has been increasingly applied, predominantly in the research setting, to study drug effects and pulmonary biology and to monitor disease progression and treatment outcomes in lung diseases that interfere with gas exchange through alterations of the pulmonary parenchyma, airways, or vasculature. To date, however, there are no widely accepted standard acquisition protocols or imaging data analysis methods for pulmonary 18F-FDG PET/CT in these diseases, resulting in disparate approaches. Hence, comparison of data across the literature is challenging. To help harmonize the acquisition and analysis and promote reproducibility, we collated details of acquisition protocols and analysis methods from 7 PET centers. From this information and our discussions, we reached the consensus recommendations given here on patient preparation, choice of dynamic versus static imaging, image reconstruction, and image analysis reporting.


Assuntos
Consenso , Fluordesoxiglucose F18 , Pneumopatias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Guias de Prática Clínica como Assunto , Fluordesoxiglucose F18/administração & dosagem , Humanos , Processamento de Imagem Assistida por Computador , Injeções , Pneumopatias/fisiopatologia , Posicionamento do Paciente , Respiração
6.
Eur J Radiol ; 130: 109182, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32702614

RESUMO

BACKGROUND: Respiratory diseases are one of the leading causes of death worldwide, yet effective treatment options remain limited. Although inflammation is thought to be a key driver in the pathogenesis and progression of several lung diseases, the underlying molecular mechanisms of lung dysfunction remain poorly understood. Imaging techniques may help to further our understanding of the pathophysiology and facilitate the translation of novel therapies. Positron Emission Tomography (PET) is a functional imaging technique which has the potential to interrogate the underlying inflammatory response. We present a systematic review of the literature summarising the emerging PET radiotracers developed to quantify pulmonary inflammation. METHOD: We performed a systematic review using the following databases: Medline, Embase, Scopus, PubMed, Web of Science and Cochrane. We included articles between 1995 and 2019 for all studies using PET radiotracers to evaluate inflammatory response in the lung. From a total of 911 articles covering both animal and human studies, two reviewers selected papers based on the inclusion/exclusion criteria and extracted data from 68 articles selected. RESULTS: 53 out of 68 papers, including both human and animal studies, were eligible for synthesis. Heterogenous study populations and differences in study design, image acquisition and analysis made data pooling unfeasible; instead, we provide a narrative synthesis. CONCLUSIONS: Currently, very few novel radiotracers targeting lung inflammation have crossed the translational gap from animal models to human studies. Nevertheless, our results highlight a handful of promising tracers which warrant further evaluation in humans. 18F-FDG has been investigated most extensively; although 18F-FDG is not a specific inflammatory tracer, human studies of several pulmonary diseases support its use as a biomarker for inflammation. Despite ongoing debate about the optimal analysis methodology for 18F-FDG lung images, standardisation of image acquisition and analysis should help to improve confidence in research outcomes. PET radiotracers can provide quantitative, targeted biomarkers which relate to the activity of molecular pathways and may expedite development of specific anti-inflammatory drugs.


Assuntos
Pneumonia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Progressão da Doença , Fluordesoxiglucose F18/administração & dosagem , Previsões , Humanos , Pneumonia/terapia , Tomografia por Emissão de Pósitrons/tendências , Compostos Radiofarmacêuticos/administração & dosagem , Resultado do Tratamento
7.
EJNMMI Phys ; 6(1): 26, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844995

RESUMO

INTRODUCTION: Compartmental modelling is an established method of quantifying 18F-FDG uptake; however, only recently has it been applied to evaluate pulmonary inflammation. Implementation of compartmental models remains challenging in the lung, partly due to the low signal-to-noise ratio compared to other organs and the lack of standardisation. Good reproducibility is a key requirement of an imaging biomarker which has yet to be demonstrated in pulmonary compartmental models of 18F-FDG; in this paper, we address this unmet need. METHODS: Retrospective subject data were obtained from the EVOLVE observational study: Ten COPD patients (age =66±9; 8M/2F), 10 α1ATD patients (age =63±8; 7M/3F) and 10 healthy volunteers (age =68±8; 9M/1F) never smokers. PET and CT images were co-registered, and whole lung regions were extracted from CT using an automated algorithm; the descending aorta was defined using a manually drawn region. Subsequent stages of the compartmental analysis were performed by two independent operators using (i) a MIAKATTM based pipeline and (ii) an in-house developed pipeline. We evaluated the metabolic rate constant of 18F-FDG (Kim) and the fractional blood volume (Vb); Bland-Altman plots were used to compare the results. Further, we adjusted the in-house pipeline to identify the salient features in the analysis which may help improve the standardisation of this technique in the lung. RESULTS: The initial agreement on a subject level was poor: Bland-Altman coefficients of reproducibility for Kim and Vb were 0.0031 and 0.047 respectively. However, the effect size between the groups (i.e. COPD, α1ATD and healthy subjects) was similar using either pipeline. We identified the key drivers of this difference using an incremental approach: ROI methodology, modelling of the IDIF and time delay estimation. Adjustment of these factors led to improved Bland-Altman coefficients of reproducibility of 0.0015 and 0.027 for Kim and Vb respectively. CONCLUSIONS: Despite similar methodology, differences in implementation can lead to disparate results in the outcome parameters. When reporting the outcomes of lung compartmental modelling, we recommend the inclusion of the details of ROI methodology, input function fitting and time delay estimation to improve reproducibility.

8.
Lymphat Res Biol ; 16(4): 340-346, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30130162

RESUMO

BACKGROUND: Yellow nail syndrome (YNS) is a rare disease manifesting as a triad of yellow-green dystrophic nails, lymphedema, and chronic respiratory disease. The etiology of YNS is obscure and investigations are few. A single lymphatic pathogenesis has been proposed to account for all the associated features, and despite the lack of evidence for a unifying lymphatic mechanism, this hypothesis prevails. The objective was to explore the lymphatic phenotype in YNS and to establish whether lymphatic dysfunction could be a major contributing factor to the disease process. METHODS AND RESULTS: Four-limb lymphoscintigraphy was performed on patients with YNS and on healthy, age-matched controls. All 17 patients had lower limb swelling, and 14 (82%) had upper limb swelling also, including 5 (29%) with hand involvement. None of the YNS lymph scans was completely normal. Combined qualitative and quantitative assessment showed that 67% of YNS scans were clearly abnormal compared with 36% of healthy control scans. Mean axillary and ilio-inguinal nodal tracer uptakes were 41%-44% lower in the YNS group than in the controls (p < 0.0001). CONCLUSIONS: YNS is a lymphatic phenotype because lymphatic insufficiency was found to exist in all patients and the insufficiency was widespread (upper and lower limbs), with a common mechanistic fault of poor transport. The origin of the lymphatic fault is unclear. In healthy individuals, lymphatic abnormalities may be relatively common in the fifth decade of life onward.


Assuntos
Extremidade Inferior/diagnóstico por imagem , Anormalidades Linfáticas/diagnóstico por imagem , Sistema Linfático/diagnóstico por imagem , Linfocintigrafia/métodos , Síndrome das Unhas Amareladas/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Diagnóstico Diferencial , Feminino , Humanos , Anormalidades Linfáticas/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Síndrome das Unhas Amareladas/genética
9.
J Nucl Med ; 58(2): 201-207, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28082432

RESUMO

Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with 18F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating 18F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.


Assuntos
Fluordesoxiglucose F18 , Interpretação de Imagem Assistida por Computador/métodos , Pneumopatias/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Testes de Função Respiratória/métodos , Humanos , Compostos Radiofarmacêuticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...