Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-489850

RESUMO

T follicular helper (Tfh) cells are specialized CD4+ T cells that regulate humoral immunity by providing B cell help. Tfh1 sub-population was recently identified and associated with severity in infection and autoimmune diseases. The cellular and molecular requirements to induce human Tfh1 differentiation are unknown. Our work investigated the role of human dendritic cells (DC) in promoting Tfh1 differentiation and their physiopathological implication in mycobacterium tuberculosis and mild COVID-19 infection. Activated human blood CD1c+ DC were cocultured with allogeneic naive CD4+ T cells. Single-cell RNA sequencing was then used alongside protein validation to define the induced Tfh lineage. DC signature and correlation with Tfh1 cells in infected patients was established through bioinformatic analysis. Our results show that GM-CSF-activated DC drove the differentiation of Tfh1 cells, displaying typical Tfh molecular features, including 1) high levels of PD-1, CXCR5, and ICOS expression; 2) BCL6 and TBET co-expression; 3) IL-21 and IFN-{gamma} secretion. Mechanistically, GM-CSF triggered the emergence of two distinct DC sub-populations defined by their differential expression of CD40 and ICOS-ligand (ICOS-L), and distinct phenotype, morphology, transcriptomic signature, and function. We showed that Tfh1 differentiation was efficiently and specifically induced by CD40highICOS-Llow DC in a CD40-dependent manner. Tfh1 cells were positively associated with a CD40highICOS-LLow DC signature in patients with latent mycobacterium tuberculosis and mild COVID-19 infection. Our study uncovers a novel CD40-dependent human Tfh1 axis. Immunotherapy modulation of Tfh1 activity might contribute to control diseases where Tfh1 are known to play a key role, such as infections. Significance StatementDendritic cells (DC) play a central role in triggering the adaptive immune response due to their T cell priming functions. Among different T cell subsets, it is still not clear how human type1 T follicular helper cells (Tfh1) differentiate. Tfh1 cells are implicated in several physiopathological conditions, including infections. Here we show that GM-CSF induces diversification of human DC. Only CD40highICOS-LLow DC were able to drive Tfh1 cell differentiation. We found that CD40highICOS-LLow DC signature was associated to Tfh1 cells in mycobacterium tuberculosis and COVID-19 patients. Our data reveal a previously undescribed pathway leading to human Tfh1 cell differentiation and highlight the importance of GM-CSF and CD40 as potential targets for the design of anti-infective therapies.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436611

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19 pandemic, which has caused a devastating global health crisis. The emergence of highly transmissible novel viral strains that escape neutralizing responses emphasizes the urgent need to deepen our understanding of SARS-CoV-2 biology and to develop additional therapeutic strategies. Using a comprehensive identification of RNA binding proteins (RBP) by mass spectrometry (ChIRP-M/S) approach, we identified 142 high-confidence cellular factors that bind the SARS-CoV-2 viral genome during infection. By systematically knocking down their expression in a human lung epithelial cell line, we found that the majority of the RBPs identified in our study are proviral factors that regulate SARS-CoV-2 genome replication. We showed that some of these proteins represented drug targets of interest for inhibiting SARS-CoV-2 infection. In conclusion, this study provides a comprehensive view of the SARS-CoV-2 RNA interactome during infection and highlights candidates for host-centered antiviral therapies.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-212837

RESUMO

COVID-19 can lead to life-threatening acute respiratory failure, characterized by simultaneous increase in inflammatory mediators and viral load. The underlying cellular and molecular mechanisms remain unclear. We performed single-cell RNA-sequencing to establish an exhaustive high-resolution map of blood antigen-presenting cells (APC) in 7 COVID-19 patients with moderate or severe pneumonia, at day-1 and day-4 post-admission, and two healthy donors. We generated a unique dataset of 31,513 high quality APC, including monocytes and rare dendritic cell (DC) subsets. We uncovered multiprocess and previously unrecognized defects in anti-viral immune defense in specific APC compartments from severe patients: i) increase of pro-apoptotic genes exclusively in pDC, which are key effectors of antiviral immunity, ii) sharp decrease of innate sensing receptors, TLR7 and DHX9, in pDC and cDC1, respectively, iii) down-regulation of antiviral effector molecules, including Interferon stimulated genes (ISG) in all monocyte subsets, and iv) decrease of MHC class II-related genes, and MHC class II transactivator (CIITA) activity in cDC2, suggesting a viral inhibition of antigen presentation. These novel mechanisms may explain patient aggravation and suggest strategies to restore defective immune defense.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-197343

RESUMO

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here, we have isolated primary SARS-CoV-2 viral strains, and studied their interaction with human plasmacytoid pre-dendritic cells (pDC), a key player in antiviral immunity. We show that pDC are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-, interferon-{lambda}1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...