Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 8(2): 268-77, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24875286

RESUMO

A machine vision implementation on a field-programmable gate array (FPGA) device for real-time microfluidic monitoring on Lab-On-Chips is presented in this paper. The machine vision system is designed to follow continuous or plug flows, for which the menisci of the fluids are always visible. The system discriminates between the front or "head" of the flow and the back or "tail" and is able to follow flows with a maximum speed of 20 mm/sec in circular channels of a diameter of 200 µm (corresponding to approx. 60 µl/sec ). It is designed to be part of a complete Point-of-Care system, which will be portable and operate in non-ideal laboratory conditions. Thus, it is able to cope with noise due to lighting conditions and small LoC displacements during the experiment execution. The machine vision system can be used for a variety of LoC devices, without the need for fiducial markers (such as redundancy patterns) for its operation. The underlying application requirements called for a complete hardware implementation. The architecture uses a variety of techniques to improve performance and minimize memory access requirements. The system input is 8 bit grayscale uncompressed video of up to 1 Mpixel resolution. The system uses an operating frequency of 170 Mhz and achieves a computational time of 13.97 ms (worst case), which leads to a throughput of 71.6 fps for 1 Mpixel video resolution.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Algoritmos , Desenho de Equipamento , Sistemas Automatizados de Assistência Junto ao Leito , Gravação em Vídeo
2.
Biosens Bioelectron ; 47: 482-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23624017

RESUMO

The architecture and design of a compact, multichannel, hybrid-multiplexed potentiostat for performing electrochemical measurements on continuously-biased electrode arrays is presented. The proposed architecture utilises a combination of sequential and parallel measurements, to enable high performance whilst keeping the system low-cost and compact. The accuracy of the signal readout is maintained by following a special multiplexing approach, which ensures the continuous biasing of all the working electrodes of an array. After sampling the results, a digital calibration technique factors out errors from component inaccuracies. A prototype printed circuit board (PCB) was designed and built using off-the-shelf components for the real-time measurement of the amperometric signal of 48 electrodes. The operation and performance of the PCB was evaluated and characterised through a wide range of testing conditions, where it exhibited high linearity (R(2)>0.999) and a resolution of 400pA. The effectiveness of the proposed multiplexing scheme is demonstrated through electrochemical tests using KCl and [Fe(CN)6](3-) in KCl solutions. The applicability of the prototype multichannel potentiostat is also demonstrated using real biosensors, which were applied to the detection of IgA antibodies.


Assuntos
Anticorpos/isolamento & purificação , Técnicas Biossensoriais , Eletrodos , Imunoglobulina A/isolamento & purificação , Animais , Anticorpos/química , Técnicas Eletroquímicas , Cloreto de Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...