Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109937, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39055602

RESUMO

Humans are the most versatile tool users among animals. Accordingly, our manual skills evolved alongside the shape of the hand. In the future, further evolution may take place: humans may merge with their tools, and technology may integrate into our biology in a way that blurs the line between the two. So, the question is whether humans can embody a bionic tool (i.e., experience it as part of their body) and thus if this would affect behavior. We investigated in virtual reality how the substitution of the hand with a virtual grafting of an end-effector, either non-naturalistic (a bionic tool) or naturalistic (a hand), impacts embodiment and behavior. Across four experiments, we show that the virtual grafting of a bionic tool elicits a sense of embodiment similar to or even stronger than its natural counterpart. In conclusion, the natural usage of bionic tools can rewire the evolution of human behavior.

2.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676068

RESUMO

Neurological disorders such as stroke, Parkinson's disease (PD), and severe traumatic brain injury (sTBI) are leading global causes of disability and mortality. This study aimed to assess the ability to walk of patients with sTBI, stroke, and PD, identifying the differences in dynamic postural stability, symmetry, and smoothness during various dynamic motor tasks. Sixty people with neurological disorders and 20 healthy participants were recruited. Inertial measurement unit (IMU) sensors were employed to measure spatiotemporal parameters and gait quality indices during different motor tasks. The Mini-BESTest, Berg Balance Scale, and Dynamic Gait Index Scoring were also used to evaluate balance and gait. People with stroke exhibited the most compromised biomechanical patterns, with lower walking speed, increased stride duration, and decreased stride frequency. They also showed higher upper body instability and greater variability in gait stability indices, as well as less gait symmetry and smoothness. PD and sTBI patients displayed significantly different temporal parameters and differences in stability parameters only at the pelvis level and in the smoothness index during both linear and curved paths. This study provides a biomechanical characterization of dynamic stability, symmetry, and smoothness in people with stroke, sTBI, and PD using an IMU-based ecological assessment.


Assuntos
Marcha , Doença de Parkinson , Equilíbrio Postural , Acidente Vascular Cerebral , Humanos , Masculino , Marcha/fisiologia , Feminino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Fenômenos Biomecânicos/fisiologia , Idoso , Acidente Vascular Cerebral/fisiopatologia , Caminhada/fisiologia , Adulto , Lesões Encefálicas Traumáticas/fisiopatologia , Velocidade de Caminhada/fisiologia
3.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373323

RESUMO

Since the spinal cord has traditionally been considered a bundle of long fibers connecting the brain to all parts of the body, the study of its role has long been limited to peripheral sensory and motor control. However, in recent years, new studies have challenged this view pointing to the spinal cord's involvement not only in the acquisition and maintenance of new motor skills but also in the modulation of motor and cognitive functions dependent on cortical motor regions. Indeed, several reports to date, which have combined neurophysiological techniques with transpinal direct current stimulation (tsDCS), have shown that tsDCS is effective in promoting local and cortical neuroplasticity changes in animals and humans through the activation of ascending corticospinal pathways that modulate the sensorimotor cortical networks. The aim of this paper is first to report the most prominent tsDCS studies on neuroplasticity and its influence at the cortical level. Then, a comprehensive review of tsDCS literature on motor improvement in animals and healthy subjects and on motor and cognitive recovery in post-stroke populations is presented. We believe that these findings might have an important impact in the future making tsDCS a potential suitable adjunctive approach for post-stroke recovery.


Assuntos
Córtex Motor , Acidente Vascular Cerebral , Animais , Humanos , Potencial Evocado Motor/fisiologia , Medula Espinal/fisiologia , Encéfalo , Acidente Vascular Cerebral/terapia , Córtex Motor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...