Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 65(31): 6529-6534, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28618783

RESUMO

A novel research of pulsed light-emitting diode (LED) lighting versus continuous lighting was conducted by analyzing phytochemical levels in microgreens. Red pak choi (Brassica rapa var. chinensis), mustard (Brassica juncea L.), and tatsoi (Brassica rapa var. rosularis) were grown indoors under HPS lamps supplemented with monochromatic (455, 470, 505, 590, and 627 nm) LEDs [total photosynthetic photon flux density (PPFD) of 200 ± 10 µmol m-2 s-1, for 16 h day-1]. For pulsed light treatments, the frequencies at 2, 32, 256, and 1024 Hz with a duty cycle of 50% monochromatic LEDs were applied. The results were compared to those under the continuous light (0 Hz) condition in terms of total phenolic content, anthocyanins, and antiradical activity (DPPH). The summarized data suggested that pulsed light affected accumulation of secondary metabolites both positive and negative in microgreens. The significant differences in the response of phytochemicals between pulsed light at several frequencies and continuous light were determined. The most positive effects of 2, 256, and 1024 Hz for total phenolic compounds in mustard under all wavelength LEDs were achieved. The LED frequencies at 2 and 32 Hz were the most suitable for accumulation of anthocyanins in red pak choi and tatsoi. The highest antiradical activity under the treatments of 32, 256, and 1024 Hz in mustard and under the 2 Hz frequency in red pak choi and tatsoi was determined.


Assuntos
Brassica rapa/efeitos da radiação , Mostardeira/efeitos da radiação , Compostos Fitoquímicos/metabolismo , Antocianinas/análise , Antocianinas/metabolismo , Brassica rapa/química , Brassica rapa/metabolismo , Luz , Mostardeira/química , Mostardeira/metabolismo , Fenóis/análise , Fenóis/metabolismo , Compostos Fitoquímicos/análise , Folhas de Planta/efeitos da radiação
2.
Food Chem ; 228: 50-56, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28317756

RESUMO

Mustard, beet and parsley were grown to harvest time under selected LEDs: 638+660+731+0% 445nm; 638+660+731+8% 445nm; 638+660+731+16% 445nm; 638+660+731+25% 445nm; 638+660+731+33% 445nm. From 1.2 to 4.3 times higher concentrations of chlorophylls a and b, carotenoids, α- and ß-carotenes, lutein, violaxanthin and zeaxanthin was found under blue 33% treatment in comparison to lower blue light dosages. Meanwhile, the accumulation of metabolites, which were not directly connected with light reactions, such as tocopherols, was more influenced by lower (16%) blue light dosage, increasing about 1.3 times. Thus, microgreen enrichment of carotenoid and xanthophyll pigments may be achieved using higher (16-33%) blue light intensities. Changes in metabolite quantities were not the result of changes of other carotenoid concentration, but were more influenced by light treatment and depended on the species. Significant quantitative changes in response to blue light percentage were obtained for both directly and not directly light-dependent metabolite groups.


Assuntos
Beta vulgaris/química , Carotenoides/química , Mostardeira/química , Petroselinum/química , Tocoferóis/química , Luz
3.
Food Chem ; 173: 600-6, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25466065

RESUMO

The objective of this study was to evaluate the effects of irradiance levels and spectra produced by solid-state light-emitting diodes (LEDs) on carotenoid content and composition changes in Brassicaceae microgreens. A system of five high-power, solid-state lighting modules with standard 447-, 638-, 665-, and 731-nm LEDs was used in the experiments. Two experiments were performed: (1) evaluation of LED irradiance levels of 545, 440, 330, 220, and 110 µmol m(-2) s(-1) photosynthetically active flux density (PPFD) and (2) evaluation of the effects of 520-, 595-, and 622-nm LEDs supplemental to the standard set of LEDs. Concentrations of various carotenoids in red pak choi and tatsoi were higher under illumination of 330-440 µmol m(-2) s(-1) and at 110-220 µmol m(-2) s(-1) in mustard. All supplemental wavelengths increased total carotenoid content in mustard but decreased it in red pak choi. Carotenoid content increased in tatsoi under supplemental yellow light.


Assuntos
Brassicaceae/química , Brassicaceae/efeitos da radiação , Carotenoides/análise , Luz , Iluminação , Luteína/análise , Fotossíntese , Folhas de Planta/química , Xantofilas/análise , beta Caroteno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...