Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
In Vitro Cell Dev Biol Anim ; 54(7): 477-485, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29948746

RESUMO

Mantle tissue from the black-lip pearl oyster, Pinctada margaritifera, was cultured in vitro using sterilized seawater supplemented with 0.1% yeast extract as the culture medium. Granular and agranular epithelial cells, hyalinocytes, and fibroblast-like cells were observed in the initial stages of culture. Epithelial cells later formed pseudopodial cell networks containing clusters of granulated cells, which upon maturation released their colored granules. These granules induced formation of nacre crystal deposits on the bottom of the culture plate. Cultures comprised of only granulated epithelial cells were established through periodic sub-culturing of mantle cells and maintained for over 18 mo in a viable condition. Reverse transcriptase PCR of cultured cells demonstrated gene expression of the shell matrix protein, nacrein. To further evaluate the functional ability of cultured granulated epithelial cells, nuclear shell beads were incubated in culture medium containing these cells to induce nacre formation on the beads. Observation of the bead surface under a stereomicroscope at periodic intervals showed the gradual formation of blackish yellow colored nacre deposits. Examination of the bead surface by scanning electron microscopy and energy dispersive X-ray analysis at periodic intervals revealed a distinct brick and mortar formation characteristic of nacre, comprised of aragonite platelets and matrix proteins. Calcium, carbon, and oxygen were the major elements in all stages examined. Our study shows that mantle epithelial cells in culture retain the ability to secrete nacre and can therefore form the basis for future studies on the biomineralization process and its application in development of sustainable pearl culture.


Assuntos
Exoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Nácar/biossíntese , Pinctada/metabolismo , Exoesqueleto/citologia , Exoesqueleto/ultraestrutura , Animais , Movimento Celular , Núcleo Celular/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Pinctada/citologia , Pinctada/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...