Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980340

RESUMO

Noise is a ubiquitous component of motor systems that leads to behavioral variability of all types of movements. Nonetheless, systems-based models investigating human movements are generally deterministic and explain only the central tendencies like mean trajectories. In this paper, a novel approach to modeling kinematic variability of movements is presented and tested on the oculomotor system. This approach reconciles the two prominent philosophies of saccade control: displacement-based control versus velocity-based control. This was achieved by quantifying the variability in saccadic eye movements and developing a stochastic model of its control. The proposed stochastic dual model generated significantly better fits of inter-trial variances of the saccade trajectories compared to existing models. These results suggest that the saccadic system can flexibly use the information of both desired displacement and velocity for its control. This study presents a potential framework for investigating computational principles of motor control in the presence of noise utilizing stochastic modeling of kinematic variability.

2.
Eur J Neurosci ; 58(1): 2232-2247, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37095631

RESUMO

Fast movements like saccadic eye movements that occur in the absence of sensory feedback are thought to be controlled by internal feedback. Such internal feedback provides an instantaneous estimate of the output, which serves as a proxy for sensory feedback, that can be used by the controller to correct deviations from the desired plan. In the predominant view, the desired plan/input is encoded in the form of a static displacement signal (endpoint model), believed to be encoded in the spatial map of the superior colliculus (SC). However, recent evidence has shown that SC neurons have a dynamic signal that correlates with saccade velocity, suggesting that information for velocity-based control is available for generating saccades. Motivated by this observation, we used a novel optimal control framework to test whether saccadic execution could be achieved by tracking a dynamic velocity signal at the input. We validated this velocity tracking model in a task where the peak saccade velocity was modulated by the speed of a concurrent hand movement independent of the saccade endpoint. A comparison showed that in this task, the velocity tracking model performed significantly better than the endpoint model. These results suggest that the saccadic system may have additional flexibility to incorporate a velocity-based internal feedback control when imposed by task goals or context.


Assuntos
Movimentos Sacádicos , Colículos Superiores , Fenômenos Biomecânicos , Colículos Superiores/fisiologia , Retroalimentação , Mãos
3.
J Adv Res ; 16: 25-34, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30899586

RESUMO

Eye movement evaluation is vital for diagnosis of various ophthalmological and neurological disorders. The present study proposes a novel, noninvasive, wearable device to acquire the eye movement based on a Fiber Bragg Grating (FBG) Sensor. The proposed Fiber Bragg Grating Eye Tracker (FBGET) can capture the displacement of the eyeball during its movements in the form of strain variations on a cantilever. The muscular displacement generated by the eyeball over the lower eyelid, by its swiveling action while moving the gaze on a target object, is converted into strain variations on a cantilever. The developed FBGET is investigated for dynamic tracking of the eye-gaze movement for various actions of the eye such as fixations, saccades and main sequence. This approach was validated by recording the eye movement using the developed FBGET as well as conventional camera-based eye tracker methodology simultaneously. The experimental results demonstrate the feasibility and the real-time applicability of the proposed FBGET as an eye tracking device. In conclusion, the present study illustrates a novel methodology involving displacement of lower eyelid for eye tracking application along with the employment of FBG sensors to carry out the same. The proposed FBGET can be utilized in both clinical and hospital environment for diagnostic purposes owing to its advantages of wear-ability and ease of implementation making it a point of care device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...