Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888278

RESUMO

Photodynamic therapy (PDT) has the potential to cure pancreatic cancer with minimal side effects. Visible wavelengths are primarily used to activate hydrophobic photosensitizers, but in clinical practice, these wavelengths do not sufficiently penetrate deeper localized tumor cells. In this work, NaYF4:Yb3+,Er3+,Fe2+ upconversion nanoparticles (UCNPs) were coated with polymer and labeled with meta-tetra(hydroxyphenyl)chlorin (mTHPC; temoporfin) to enable near-infrared light (NIR)-triggered PDT of pancreatic cancer. The coating consisted of alendronate-terminated poly[N,N-dimethylacrylamide-co-2-aminoethylacrylamide]-graft-poly(ethylene glycol) [P(DMA-AEM)-PEG-Ale] to ensure the chemical and colloidal stability of the particles in aqueous physiological fluids, thereby also improving the therapeutic efficacy. The designed particles were well tolerated by the human pancreatic adenocarcinoma cell lines CAPAN-2, PANC-1, and PA-TU-8902. After intratumoral injection of mTHPC-conjugated polymer-coated UCNPs and subsequent exposure to 980 nm NIR light, excellent PDT efficacy was achieved in tumor-bearing mice.

2.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791332

RESUMO

In this study, spherical or hexagonal NaYF4:Yb,Er nanoparticles (UCNPs) with sizes of 25 nm (S-UCNPs) and 120 nm (L-UCNPs) were synthesized by high-temperature coprecipitation and subsequently modified with three kinds of polymers. These included poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide) [P(DMA-AEA)] terminated with an alendronate anchoring group, and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The internalization of nanoparticles by rat mesenchymal stem cells (rMSCs) and C6 cancer cells (rat glial tumor cell line) was visualized by electron microscopy and the cytotoxicity of the UCNPs and their leaches was measured by the real-time proliferation assay. The comet assay was used to determine the oxidative damage of the UCNPs. An in vivo study on mice determined the elimination route and potential accumulation of UCNPs in the body. The results showed that the L- and S-UCNPs were internalized into cells in the lumen of endosomes. The proliferation assay revealed that the L-UCNPs were less toxic than S-UCNPs. The viability of rMSCs incubated with particles decreased in the order S-UCNP@Ale-(PDMA-AEA) > S-UCNP@Ale-PEG > S-UCNPs > S-UCNP@PMVEMA. Similar results were obtained in C6 cells. The oxidative damage measured by the comet assay showed that neat L-UCNPs caused more oxidative damage to rMSCs than all coated UCNPs while no difference was observed in C6 cells. An in vivo study indicated that L-UCNPs were eliminated from the body via the hepatobiliary route; L-UCNP@Ale-PEG particles were almost eliminated from the liver 96 h after intravenous application. Pilot fluorescence imaging confirmed the limited in vivo detection capabilities of the nanoparticles.


Assuntos
Células-Tronco Mesenquimais , Animais , Camundongos , Ratos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Linhagem Celular Tumoral , Polietilenoglicóis/química , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Masculino , Estresse Oxidativo/efeitos dos fármacos
3.
Nanoscale Adv ; 5(24): 6979-6989, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059042

RESUMO

In this report, upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation of lanthanide chlorides and encapsulated in poly(glycerol monomethacrylate) (PGMMA). The UCNP surface was first treated with hydrophobic penta(propylene glycol) methacrylate phosphate (SIPO) to improve colloidal stability and enable encapsulation by reversible addition-fragmentation chain transfer miniemulsion polymerization (RAFT) of glycidyl methacrylate (GMA) in water, followed by its hydrolysis. The resulting UCNP-containing PGMMA particles (UCNP@PGMMA), hundreds of nanometers in diameter, were thoroughly characterized by transmission (TEM) and scanning electron microscopy (SEM), dynamic light scattering (DLS), infrared (FTIR) and fluorescence emission spectroscopy, and thermogravimetric analysis (TGA) in terms of particle morphology, size, polydispersity, luminescence, and composition. The morphology, typically raspberry-like, depended on the GMA/UCNP weight ratio. Coating of the UCNPs with hydrophilic PGMMA provided the UCNPs with antifouling properties while enhancing chemical stability and reducing the cytotoxicity of neat UCNPs to a non-toxic level. In addition, it will allow the binding of molecules such as photosensitizers, thus expanding the possibilities for use in various biomedical applications.

4.
Nanomaterials (Basel) ; 13(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37177080

RESUMO

In this report, we synthesized hexagonal NaYF4:Yb,Er upconverting nanoparticles (UCNPs) of 171 nm in size with a narrow particle size distribution. To address their colloidal stabi-lity in aqueous media and to incorporate a photosensitizer that can produce reactive singlet oxygen (1O2) to kill tumor cells, UCNPs were conjugated with 6-bromohexanoic acid-functionalized Rose Bengal (RB) and coated with PEG-alendronate (PEG-Ale). The particles were thoroughly characterized by transmission electron microscopy, dynamic light scattering, ATR FTIR, X-ray photoelectron spectroscopy, thermogravimetric analysis, and spectrofluorometry, and 1O2 formation was detected using a 9,10-diphenylanthracene spectrophotometric probe. Cytotoxicity determination on rat mesenchymal stem cells by using the MTT assay showed that neutralization of the large positive surface charge of neat UCNPs with PEG-Ale and the bound RB sensitizer significantly reduced the concentration-dependent cytotoxicity. The presented strategy shows great potential for the use of these particles as a novel agent for the photodynamic therapy of tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...