Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hematol Oncol ; 10(1): 100, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28472989

RESUMO

BACKGROUND: Solid tumors residing in tissues and organs leave footprints in circulation through circulating tumor cells (CTCs) and circulating tumor DNAs (ctDNA). Characterization of the ctDNA portraits and comparison with tumor DNA mutational portraits may reveal clinically actionable information on solid tumors that is traditionally achieved through more invasive approaches. METHODS: We isolated ctDNAs from plasma of patients of 103 lung cancer and 74 other solid tumors of different tissue origins. Deep sequencing using the Guardant360 test was performed to identify mutations in 73 clinically actionable genes, and the results were associated with clinical characteristics of the patient. The mutation profiles of 37 lung cancer cases with paired ctDNA and tumor genomic DNA sequencing were used to evaluate clonal representation of tumor in circulation. Five lung cancer cases with longitudinal ctDNA sampling were monitored for cancer progression or response to treatments. RESULTS: Mutations in TP53, EGFR, and KRAS genes are most prevalent in our cohort. Mutation rates of ctDNA are similar in early (I and II) and late stage (III and IV) cancers. Mutation in DNA repair genes BRCA1, BRCA2, and ATM are found in 18.1% (32/177) of cases. Patients with higher mutation rates had significantly higher mortality rates. Lung cancer of never smokers exhibited significantly higher ctDNA mutation rates as well as higher EGFR and ERBB2 mutations than ever smokers. Comparative analysis of ctDNA and tumor DNA mutation data from the same patients showed that key driver mutations could be detected in plasma even when they were present at a minor clonal population in the tumor. Mutations of key genes found in the tumor tissue could remain in circulation even after frontline radiotherapy and chemotherapy suggesting these mutations represented resistance mechanisms. Longitudinal sampling of five lung cancer cases showed distinct changes in ctDNA mutation portraits that are consistent with cancer progression or response to EGFR drug treatment. CONCLUSIONS: This study demonstrates that ctDNA mutation rates in the key tumor-associated genes are clinical parameters relevant to smoking status and mortality. Mutations in ctDNA may serve as an early detection tool for cancer. This study quantitatively confirms the hypothesis that ctDNAs in circulation is the result of dissemination of aggressive tumor clones and survival of resistant clones. This study supports the use of ctDNA profiling as a less-invasive approach to monitor cancer progression and selection of appropriate drugs during cancer evolution.


Assuntos
DNA de Neoplasias/genética , Mutação , Invasividade Neoplásica/genética , Neoplasias/genética , Células Neoplásicas Circulantes , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Quimiorradioterapia , Células Clonais , Progressão da Doença , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/uso terapêutico , Feminino , Perfilação da Expressão Gênica , Genes Neoplásicos , Genes erbB-1 , Genes p53 , Genes ras , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Neoplasias/mortalidade , Neoplasias/patologia , Células-Tronco Neoplásicas , Inibidores de Proteínas Quinases/uso terapêutico , Estudos Retrospectivos , Análise de Sequência de DNA , Fumar/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...