Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 7(5): e2200041, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35751460

RESUMO

Blood and lymphatic vessels are regulators of physiological processes, including oxygenation and fluid transport. Both vessels are ubiquitous throughout the body and are critical for sustaining tissue homeostasis. The complexity of each vessel's processes has limited the understanding of exactly how the vessels maintain their functions. Both vessels have been shown to be involved in the pathogenesis of many diseases, including cancer metastasis, and it is crucial to probe further specific mechanisms involved. In vitro models are developed to better understand blood and lymphatic physiological functions and their mechanisms. In this review, blood and lymphatic in vitro model systems, including 2D and 3D designs made using Transwells, microfluidic devices, organoid cultures, and various other methods, are described. Models studying endothelial cell-extracellular matrix interactions, endothelial barrier properties, transendothelial transport and cell migration, lymph/angiogenesis, vascular inflammation, and endothelial-cancer cell interactions are particularly focused. While the field has made significant progress in modeling and understanding lymphatic and blood vasculature, more models that include coculture of multiple cell types, complex extracellular matrix, and 3D morphologies, particularly for models mimicking disease states, will help further the understanding of the role of blood and lymphatic vasculature in health and disease.


Assuntos
Vasos Linfáticos , Vasos Linfáticos/fisiologia , Tecido Linfoide , Movimento Celular , Comunicação Celular
2.
Biomater Sci ; 10(24): 6992-7003, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36322022

RESUMO

Lymph nodes (LNs) are highly structured lymphoid organs that compartmentalize B and T cells in the outer cortex and inner paracortex, respectively, and are supported by a collagen-rich reticular network. Tissue material properties like viscoelasticity and diffusion of materials within extracellular spaces and their implications on cellular behavior and therapeutic delivery have been a recent topic of investigation. Here, we developed a nanoparticle system to investigate the rheological properties, including pore size and viscoelasticity, through multiple particle tracking (MPT) combined with LN slice cultures. Dense coatings with polyethylene glycol (PEG) allow nanoparticles to diffuse within the LN extracellular spaces. Despite differences in function in B and T cell zones, we found that extracellular tissue properties and mesh spacing do not change significantly in the cortex and paracortex, though nanoparticle diffusion was slightly reduced in B cell zones. Interestingly, our data suggest that LN pore sizes are smaller than the previously predicted 10-20 µm, with pore sizes ranging from 500 nm-1.5 µm. Our studies also confirm that LNs exhibit viscoelastic properties, with an initial solid-like response followed by stress-relaxation at higher frequencies. Finally, we found that nanoparticle diffusion is dependent on LN location, with nanoparticles in skin draining LNs exhibiting a higher diffusion coefficient and pore size compared to mesenteric LNs. Our data shed new light onto LN interstitial tissue properties, pore size, and define surface chemistry parameters required for nanoparticles to diffuse within LN interstitium. Our studies also provide both a tool for studying LN interstitium and developing design criteria for nanoparticles targeting LN interstitial spaces.


Assuntos
Reologia , Camundongos , Animais
3.
Ageing Res Rev ; 70: 101385, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34098113

RESUMO

Huntington's disease (HD) is an autosomal neurodegenerative disorder caused by extended trinucleotide CAG repetition in the HTT gene. Wild-type huntingtin protein (HTT) is essential, involved in a variety of crucial cellular functions such as vesicle transportation, cell division, transcription regulation, autophagy, and tissue maintenance. The mutant HTT (mHTT) proteins in the body interfere with HTT's normal cellular functions and cause additional detrimental effects. In this review, we discuss multiple approaches targeting DNA and RNA to reduce mHTT expression. These approaches are categorized into non-allele-specific silencing and allele-specific-silencing using Single Nucleotide Polymorphisms (SNPs) and haplogroup analysis. Additionally, this review discusses a potential application of recent CRISPR prime editing technology in targeting HD.


Assuntos
Doença de Huntington , Alelos , Regulação da Expressão Gênica , Marcação de Genes , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...