Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; : e5198, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840502

RESUMO

BACKGROUND: Very low-field MR has emerged as a promising complementary device to high-field MRI scanners, offering several advantages. One of the key benefits is that very low-field scanners are generally more portable and affordable to purchase and maintain, making them an attractive option for medical facilities looking to reduce costs. Very low-field MRI systems also have lower RF power deposition, making them safer and less likely to cause tissue heating or other safety concerns. They are also simpler to maintain, as they do not require cooling agents such as liquid helium. However, these portable MR scanners are impacted by temperature, lower magnetic field strength, and inhomogeneity, resulting in images with lower signal-to-noise ratio (SNR) and higher geometric distortions. It is essential to investigate and tabulate the variations in these parameters to establish bounds so that subsequent in vivo studies and deployment of these portable systems can be well informed. PURPOSE: The aim of this work is to investigate the repeatability of image quality metrics such as SNR and geometrical distortion at 0.05 T over 10 days and three sessions per day. METHODS: We acquired repeatability data over 10 days with three sessions per day. The measurements included temperature, humidity, transmit frequency, off-resonance maps, and 3D turbo spin echo (TSE) images of an in vitro phantom. This resulted in a protocol with 11 sequences. We also acquired a 3 T data set for reference. The image quality metrics included computing SNR and eccentricity (to assess geometrical distortion) to investigate the repeatability of 0.05 T image quality. The image reconstruction included drift correction, k-space filtering, and off-resonance correction. We computed the experimental parameters' coefficient of variation (CV) and the resulting image quality metrics to assess repeatability. We have explored the impact of electromagnetic interference (EMI) on image quality in very low-field MRI. The investigation involved varying both the distance and amplitude of the EMI-producing coil from the signal generator to analyze their effects on image quality. RESULTS: The range of temperature measured during the study was within 1.5 °C. The off-resonance maps acquired before and after the 3D TSE showed similar hotspots and were changed mainly by a global constant. The SNR measurements were highly repeatable across sessions and over the 10 days, quantified by a CV of 6.7%. The magnetic field inhomogeneity effects quantified by eccentricity showed a CV of 13.7%, but less than 5.1% in two of the three sessions over 10 days. The use of conjugate phase reconstruction mitigated geometrical distortion artifacts. Temperature and humidity did not significantly affect SNR or mean frequency drift within the ranges of these environmental factors investigated. The EMI experiment showed that as the amplitude increased the SNR decreased, and concurrently the root mean square of the background increased with a rise in EMI amplitude or a reduction in distance. CONCLUSIONS: We found that humidity and temperature in the range investigated did not impact SNR or frequency. Based on the CV values computed session-wise and for the overall study, our findings indicate high repeatability for SNR and magnetic field homogeneity.

2.
NMR Biomed ; 37(5): e5109, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38440915

RESUMO

This study presents a tool that introduces the fundamental concepts of magnetic resonance (MR) by integrating related science, technology, engineering, arts, and mathematical (STEAM) topics in the form of games to improve the access to MR education.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
3.
Front Neuroimaging ; 2: 1072759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554641

RESUMO

Magnetic Resonance Imaging (MR Imaging) is routinely employed in diagnosing Alzheimer's Disease (AD), which accounts for up to 60-80% of dementia cases. However, it is time-consuming, and protocol optimization to accelerate MR Imaging requires local expertise since each pulse sequence involves multiple configurable parameters that need optimization for contrast, acquisition time, and signal-to-noise ratio (SNR). The lack of this expertise contributes to the highly inefficient utilization of MRI services diminishing their clinical value. In this work, we extend our previous effort and demonstrate accelerated MRI via intelligent protocolling of the modified brain screen protocol, referred to as the Gold Standard (GS) protocol. We leverage deep learning-based contrast-specific image-denoising to improve the image quality of data acquired using the accelerated protocol. Since the SNR of MR acquisitions depends on the volume of the object being imaged, we demonstrate subject-specific (SS) image-denoising. The accelerated protocol resulted in a 1.94 × gain in imaging throughput. This translated to a 72.51% increase in MR Value-defined in this work as the ratio of the sum of median object-masked local SNR values across all contrasts to the protocol's acquisition duration. We also computed PSNR, local SNR, MS-SSIM, and variance of the Laplacian values for image quality evaluation on 25 retrospective datasets. The minimum/maximum PSNR gains (measured in dB) were 1.18/11.68 and 1.04/13.15, from the baseline and SS image-denoising models, respectively. MS-SSIM gains were: 0.003/0.065 and 0.01/0.066; variance of the Laplacian (lower is better): 0.104/-0.135 and 0.13/-0.143. The GS protocol constitutes 44.44% of the comprehensive AD imaging protocol defined by the European Prevention of Alzheimer's Disease project. Therefore, we also demonstrate the potential for AD-imaging via automated volumetry of relevant brain anatomies. We performed statistical analysis on these volumetric measurements of the hippocampus and amygdala from the GS and accelerated protocols, and found that 27 locations were in excellent agreement. In conclusion, accelerated brain imaging with the potential for AD imaging was demonstrated, and image quality was recovered post-acquisition using DL-based image denoising models.

4.
Phys Med Biol ; 68(17)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37489867

RESUMO

The purpose of this study is to demonstrate the first work ofT1-based magnetic resonance thermometry using magnetic resonance fingerprinting (dubbed MRFT). We compared temperature estimation of MRFT with proton resonance frequency shift (PRFS) thermometry onex vivobovine muscle. We demonstrated MRFT's feasibility in predicting temperature onex vivobovine muscles with deep brain stimulation (DBS) lead.B0maps generated from MRFT were compared with gold standardB0maps near the DBS lead. MRFT and PRFS estimated temperatures were compared in the presence of motion. All experiments were performed on a 3 Tesla whole-body GE Premier system with a 21-channel receive head coil (GE Healthcare, Milwaukee, WI). Four fluoroptic probes were used to measure the temperature at the center of a cold muscle (probe 1), the room temperature water bottle (probe 2), and the center and periphery of the heated muscle (probes 3 and 4). We selected regions of interest (ROIs) around the location of the probes and used simple linear regression to generate the temperature sensitivity calibration equations that convertT1maps and Δsmaps to temperature maps. We then repeated the same setup and compared MRFT and PRFS thermometry temperature estimation with gold standard probe measurements. For the MRFT experiment on DBS lead, we taped the probe to the tip of the DBS lead and used a turbo spin echo sequence to induce heating near the lead. We selected ROIs around the tip of the lead to compare MRFT temperature estimation with probe measurements and compared with PRFS temperature estimation. Vendor-suppliedB0mapping sequence was acquired to compare with MRFT-generatedB0maps. We found strong linear relationships (R2> 0.958) betweenT1and temperature and Δsand temperatures in our temperature sensitivity calibration experiment. MRFT and PRFS thermometry both accurately predict temperature (RMSE < 1.55 °C) compared to probe measurements. MRFT estimated temperature near DBS lead has a similar trend as the probe temperature. BothB0maps show inhomogeneities around the lead. MRFT estimated temperature is less sensitive to motion.


Assuntos
Chumbo , Termometria , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Termometria/métodos , Temperatura , Imagens de Fantasmas
5.
NMR Biomed ; : e4921, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914280

RESUMO

Presently, magnetic resonance imaging (MRI) magnets must deliver excellent magnetic field (B0 ) uniformity to achieve optimum image quality. Long magnets can satisfy the homogeneity requirements but require considerable superconducting material. These designs result in large, heavy, and costly systems that aggravate as field strength increases. Furthermore, the tight temperature tolerance of niobium titanium magnets adds instability to the system and requires operation at liquid helium temperature. These issues are crucial factors in the disparity of MR density and field strength use across the globe. Low-income settings show reduced access to MRI, especially to high field strengths. This article summarizes the proposed modifications to MRI superconducting magnet design and their impact on accessibility, including compact, reduced liquid helium, and specialty systems. Reducing the amount of superconductor inevitably entails shrinking the magnet size, resulting in higher field inhomogeneity. This work also reviews the state-of-the-art imaging and reconstruction methods to overcome this issue. Finally, we summarize the current and future challenges and opportunities in the design of accessible MRI.

6.
Data Brief ; 42: 108105, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35434217

RESUMO

Raw data, simulated and acquired phantom images, and quantitative longitudinal and transverse relaxation times (T1/T2) maps from two open-source Magnetic Resonance Imaging (MRI) pulse sequences are presented in this dataset along with corresponding ".seq" files, sequence implementation scripts, and reconstruction/analysis scripts [1]. Real MRI data were collected from a 3T Siemens Prisma Fit and a 1.5T Siemens Aera via the Pulseq open-source MR sequence platform, and corresponding in silico data were generated using the simulation module of Virtual Scanner [2]. This dataset and its associated code can be used to validate the pipeline for using the same pulse sequences at other research sites using Pulseq, to provide guidelines for documenting and sharing open-source pulse sequences in general, and to demonstrate practical, customizable acquisition scripts using the PyPulseq library.

7.
Med Phys ; 49(3): 1673-1685, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35084744

RESUMO

PURPOSE: The goals of this study include: (a) generating tailored magnetic resonance fingerprinting (TMRF) based non-synthetic imaging; (b) assessing the repeatability of TMRF and deep learning-based mapping of in vitro ISMRM/NIST phantom and in vivo brain data of healthy human subjects. METHODS: We have acquired qualitative images obtained from the vendor-supplied gold standard (GS), MRF (synthetic), and TMRF (non-synthetic) on one representative healthy human brain. We also acquired 30 datasets on the ISMRM/NIST phantom for the in vitro repeatability study on a GE Discovery 3T MR750w scanner using the TMRF sequence. We compared T1 and T2 maps generated from 30 ISMRM/NIST phantom datasets to the spin-echo (SE) based GS method as part of the in vitro repeatability study. R-squared coefficient of determination in a simple linear regression and Bland-Altman analysis were computed for 30 datasets of ISMRM/NIST phantom to assess the accuracy of in vitro quantitative TMRF data. The repeatability of T1 and T2 estimates by TMRF was evaluated by calculating the standard deviation (SD) divided by the average of 30 datasets for each sphere, respectively. We acquired 10 volunteers for the in vivo repeatability study on the same scanner using the same TMRF sequence. These volunteers were imaged five times with two runs per repetition, resulting in 100 in vivo datasets. Five contrasts, T1 and T2 maps of 10 human volunteers acquired over five repetitions, were evaluated in the in vivo repeatability study. We computed the intraclass correlation coefficient (ICC) of the signal-to-noise ratio (SNR), signal intensities, T1 and T2 relaxation times in white matter (WM), and gray matter (GM). RESULTS: The synthetic images generated from MRF show partial volume and flow artifacts compared to non-synthetic images obtained from TMRF images and the GS. In vitro studies show that TMRF estimates have less than 5% variations except sphere 14 in the T2 array (6.36%). TMRF and SE relaxometry measurements were strongly correlated; R2 values were 0.9958 and 0.9789 for T1 and T2 estimates, respectively. Based on the ICC values, SNR, mean intensity values, and relaxation times of WM and GM for the in vivo studies were consistent. T1 and T2 values of WM and GM were similar to previously published values. The mean ± SD of T1 and T2 for WM for ten subjects and five repeats are 992 ± 41 ms and 99 ± 6 ms, while the corresponding values for T1 and T2 for GM are 1598 ± 73 ms and 152 ± 14 ms. CONCLUSION: TMRF and deep learning-based reconstruction produce repeatable, non-synthetic multi-contrast images, and parametric maps simultaneously.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
8.
Magn Reson Imaging ; 87: 7-18, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34861358

RESUMO

Open-source pulse sequence programs offer an accessible and transparent approach to sequence development and deployment. However, a common framework for testing, documenting, and sharing open-source sequences is still needed to ensure sequence usability and repeatability. We propose and demonstrate such a framework by implementing two sequences, Inversion Recovery Spin Echo (IRSE) and Turbo Spin Echo (TSE), with PyPulseq, and testing them on a commercial 3 T scanner. We used the ACR and ISMRM/NIST phantoms for qualitative imaging and T1/T2 mapping, respectively. The qualitative sequences show good agreement with vendor-provided counterparts (mean Structural Similarity Index Measure (SSIM) = 0.810 for IRSE and 0.826 for TSE). Both sequences passed five out of the seven standard ACR tests, performing at similar levels to vendor counterparts. Compared to reference values, the coefficient of determination R2 was 0.9946 for IRSE T1 mapping and 0.9331 for TSE T2 mapping. All sequences passed the scanner safety check for a 70 kg, 175 cm subject. The framework was demonstrated by packaging the sequences and sharing them on GitHub with data and documentation on the file generation, acquisition, reconstruction, and post-processing steps. The same sequences were tested at a second site using a 1.5 T scanner with the information shared. PDF templates for both sequence developers and users were created and filled.


Assuntos
Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
9.
Magn Reson Med ; 86(1): 543-550, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33547673

RESUMO

PURPOSE: Demonstrate ability to produce reasonable simulations of temperature using numerical models of the human body with a limited number of tissues. METHODS: For both a male and female human body model, numerical simulations were used to calculate temperature distributions in three different models of the same human body: the original model with 35 tissues for the male model and 76 tissues for the female model, a simplified model having only three tissues (muscle, fat, and lung), and a simplified model having six tissues (muscle, fat, lung, bone, brain, and skin). RESULTS: Although a three-tissue model gave reasonable specific absorption rate estimates in comparison to an original with many more tissues, because of tissue-specific thermal and physiological properties that do not affect specific absorption rate, such as rate of perfusion by blood, the three-tissue model did not provide temperature distributions similar to those of the original model. Inclusion of a few additional tissues, as in the six-tissue model, produced results in much better agreement with those from the original model. CONCLUSION: Reasonable estimates of temperature can be simulated with a limited number of tissues, although this number is higher than the number of tissues required to produce reasonable simulations of specific absorption rate. For exposures primarily in the head and thorax, six tissues may be adequate for reasonable estimates of temperature.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Biológicos , Perfusão , Temperatura
10.
J Magn Reson Imaging ; 49(7): e65-e77, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30637891

RESUMO

The role of MRI in diagnostics, prognostics, and discoveries in basic sciences has been well established. However, access to this life-saving technology is largely restricted to countries in upper-middle to high-income groups. In this article, we collate recent global MR scanner density data and group them into six geographical regions based on the WHO classification. We then analyze these data with respect to demographic factors such as population size, life expectancy, the percentage of internet users, and World Bank income grouping. We map these demographic factors to five dimensions or characteristics of accessible MRI, adapting definitions from the healthcare literature. With this background, the study then reviews recent demonstrations of accessible MRI categorized based on main magnetic field strength. We describe demonstrated examples for each of these categories, ranging from ultralow-field to ultrahigh-field MRI. Lastly, we review MR methods and associated developments impacting accessible MRI such as increasing/augmenting MR awareness and local expertise, incorporating hardware-cognizant methods, rapid quantitative imaging, and leveraging innovations from adjacent fields. Level of Evidence: 5 Technical Efficacy Stage: 6 J. Magn. Reson. Imaging 2019.


Assuntos
Imageamento por Ressonância Magnética/economia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Tomada de Decisões , Desenho de Equipamento , Saúde Global , Acessibilidade aos Serviços de Saúde , Humanos , Imagens de Fantasmas , Software , Organização Mundial da Saúde
11.
IEEE Trans Microw Theory Tech ; 64(10): 3217-3223, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28303035

RESUMO

A coupler is an indispensable component to sample the forward and reflected power for the real-time radio frequency (RF) power monitoring system. The directivity of a coupler is a critical factor to achieve accurate RF power measurements. This paper proposes a microstrip coupler with a tunable high directivity circuit to accurately measure the reflected RF power. The directivity tuner composed of passive components adjusts phase and amplitude of the coupled RF signal, and cancel out the leakage signal from the RF input port at the coupled reflection port. The experimental results, which agree with simulation results, show that the microstrip coupler with the directivity tuner circuit has a compact size (~ 0.07 λg x 0.05 λg), high power capability (up to 1 kW), and high directivities (more than 40 dB) at operating frequency bands (f = 297.3 MHz, 400 MHz, and 447 MHz, respectively) for magnetic resonance imaging (MRI) applications.

12.
IEEE Trans Biomed Circuits Syst ; 9(5): 725-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25361512

RESUMO

Magnetic resonance imaging (MRI) is a widely used nonionizing and noninvasive diagnostic instrument to produce detailed images of the human body. The radio-frequency (RF) coil is an essential part of MRI hardware as an RF front-end. RF coils transmit RF energy to the subject and receive the returning MR signal. This paper presents an MRI-compatible hardware design of the new automatic frequency tuning and impedance matching system. The system automatically corrects the detuned and mismatched condition that occurs due to loading effects caused by the variable subjects (i.e., different human heads or torsos). An eight-channel RF transceiver head coil with the automatic system has been fabricated and tested at 7 Tesla (T) MRI system. The automatic frequency tuning and impedance matching system uses digitally controlled capacitor arrays with real-time feedback control capability. The hardware design is not only compatible with current MRI scanners in all aspects but also it operates the tuning and matching function rapidly and accurately. The experimental results show that the automatic function increases return losses from 8.4 dB to 23.7 dB (maximum difference) and from 12.7 dB to 19.6 dB (minimum difference) among eight channels within 550 ms . The reflected RF power decrease from 23.1% to 1.5% (maximum difference) and from 5.3% to 1.1% (minimum difference). Therefore, these results improve signal-to-noise ratio (SNR) in MR images with phantoms.


Assuntos
Engenharia Biomédica/instrumentação , Cabeça/fisiologia , Imageamento por Ressonância Magnética/instrumentação , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Ondas de Rádio , Transdutores
13.
IEEE Trans Microw Theory Tech ; 62(8): 1784-1789, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25892746

RESUMO

Higher magnetic field strength in magnetic resonance imaging (MRI) systems offers higher signal-to-noise ratio (SNR), contrast, and spatial resolution in MR images. However, the wavelength in ultra-high fields (7 tesla and beyond) becomes shorter than the human body at the Larmor frequency with increasing static magnetic field (B0) of MRI system. At short wavelengths, interference effect appears resulting in non- uniformity of the RF magnetic near-field (B1) over the subject and MR images may have spatially anomalous contrast. The B1 near-field generated by the transverse electromagnetic (TEM) RF coil's microstrip line element has a maximum near the center of its length and falls off towards both ends. In this study, a double trapezoidal shaped microstrip transmission line element is proposed to obtain uniform B1 field distribution by gradual impedance variation. Two multi-channel RF head coils with uniform and trapezoidal shape elements were built and tested with a phantom at 7T MRI scanner for comparison. The simulation and experimental results show stronger and more uniform B1+ near-field with the trapezoidal shape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...