Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(18): 7178-7185, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37102678

RESUMO

Membrane proteins are vital in the human proteome for their cellular functions and make up a majority of drug targets in the U.S. However, characterizing their higher-order structures and interactions remains challenging. Most often membrane proteins are studied in artificial membranes, but such artificial systems do not fully account for the diversity of components present in cell membranes. In this study, we demonstrate that diethylpyrocarbonate (DEPC) covalent labeling mass spectrometry can provide binding site information for membrane proteins in living cells using membrane-bound tumor necrosis factor α (mTNFα) as a model system. Using three therapeutic monoclonal antibodies that bind TNFα, our results show that residues that are buried in the epitope upon antibody binding generally decrease in DEPC labeling extent. Additionally, serine, threonine, and tyrosine residues on the periphery of the epitope increase in labeling upon antibody binding because of a more hydrophobic microenvironment that is created. We also observe changes in labeling away from the epitope, indicating changes to the packing of the mTNFα homotrimer, compaction of the mTNFα trimer against the cell membrane, and/or previously uncharacterized allosteric changes upon antibody binding. Overall, DEPC-based covalent labeling mass spectrometry offers an effective means of characterizing structure and interactions of membrane proteins in living cells.


Assuntos
Proteínas de Membrana , Tirosina , Humanos , Dietil Pirocarbonato/química , Espectrometria de Massas/métodos , Membrana Celular , Ligação Proteica
2.
MAbs ; 11(3): 463-476, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30636503

RESUMO

Monoclonal antibodies are among the fastest growing therapeutics in the pharmaceutical industry. Detecting higher-order structure changes of antibodies upon storage or mishandling, however, is a challenging problem. In this study, we describe the use of diethylpyrocarbonate (DEPC)-based covalent labeling (CL) - mass spectrometry (MS) to detect conformational changes caused by heat stress, using rituximab as a model system. The structural resolution obtained from DEPC CL-MS is high enough to probe subtle conformation changes that are not detectable by common biophysical techniques. Results demonstrate that DEPC CL-MS can detect and identify sites of conformational changes at the temperatures below the antibody melting temperature (e.g., 55 á´¼C). The observed labeling changes at lower temperatures are validated by activity assays that indicate changes in the Fab region. At higher temperatures (e.g., 65 á´¼C), conformational changes and aggregation sites are identified from changes in CL levels, and these results are confirmed by complementary biophysical and activity measurements. Given the sensitivity and simplicity of DEPC CL-MS, this method should be amenable to the structural investigations of other antibody therapeutics.


Assuntos
Dietil Pirocarbonato/química , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Rituximab/química , Espectrometria de Massas , Estrutura Quaternária de Proteína
3.
Sci Rep ; 8(1): 5820, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643409

RESUMO

Human parechoviruses (HPeV) are picornaviruses with a highly-ordered RNA genome contained within icosahedrally-symmetric capsids. Ordered RNA structures have recently been shown to interact with capsid proteins VP1 and VP3 and facilitate virus assembly in HPeV1. Using an assay that combines reversible cross-linking, RNA affinity purification and peptide mass fingerprinting (RCAP), we mapped the RNA-interacting regions of the capsid proteins from the whole HPeV1 virion in solution. The intrinsically-disordered N-termini of capsid proteins VP1 and VP3, and unexpectedly, VP0, were identified to interact with RNA. Comparing these results to those obtained using recombinantly-expressed VP0 and VP1 confirmed the virion binding regions, and revealed unique RNA binding regions in the isolated VP0 not previously observed in the crystal structure of HPeV1. We used RNA fluorescence anisotropy to confirm the RNA-binding competency of each of the capsid proteins' N-termini. These findings suggests that dynamic interactions between the viral RNA and the capsid proteins modulate virus assembly, and suggest a novel role for VP0.


Assuntos
Proteínas do Capsídeo/metabolismo , Parechovirus/fisiologia , RNA Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus , Proteínas do Capsídeo/química , Reagentes de Ligações Cruzadas/química , Células HT29 , Humanos , Modelos Moleculares , RNA Viral/química
4.
Nat Commun ; 8: 14762, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345656

RESUMO

The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions to those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Overall, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.


Assuntos
Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Zika virus/metabolismo , Cristalografia por Raios X , Metiltransferases/metabolismo , Conformação Proteica , Capuzes de RNA , RNA Polimerase Dependente de RNA/metabolismo , Especificidade por Substrato , Replicação Viral , Zika virus/fisiologia
5.
J Virol ; 90(17): 7748-60, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27334588

RESUMO

UNLABELLED: The four brome mosaic virus (BMV) RNAs (RNA1 to RNA4) are encapsidated in three distinct virions that have different disassembly rates in infection. The mechanism for the differential release of BMV RNAs from virions is unknown, since 180 copies of the same coat protein (CP) encapsidate each of the BMV genomic RNAs. Using mass spectrometry, we found that the BMV CP contains a complex pattern of posttranslational modifications. Treatment with phosphatase was found to not significantly affect the stability of the virions containing RNA1 but significantly impacted the stability of the virions that encapsidated BMV RNA2 and RNA3/4. Cryo-electron microscopy reconstruction revealed dramatic structural changes in the capsid and the encapsidated RNA. A phosphomimetic mutation in the flexible N-terminal arm of the CP increased BMV RNA replication and virion production. The degree of phosphorylation modulated the interaction of CP with the encapsidated RNA and the release of three of the BMV RNAs. UV cross-linking and immunoprecipitation methods coupled to high-throughput sequencing experiments showed that phosphorylation of the BMV CP can impact binding to RNAs in the virions, including sequences that contain regulatory motifs for BMV RNA gene expression and replication. Phosphatase-treated virions affected the timing of CP expression and viral RNA replication in plants. The degree of phosphorylation decreased when the plant hosts were grown at an elevated temperature. These results show that phosphorylation of the capsid modulates BMV infection. IMPORTANCE: How icosahedral viruses regulate the release of viral RNA into the host is not well understood. The selective release of viral RNA can regulate the timing of replication and gene expression. Brome mosaic virus (BMV) is an RNA virus, and its three genomic RNAs are encapsidated in separate virions. Through proteomic, structural, and biochemical analyses, this work shows that posttranslational modifications, specifically, phosphorylation, on the capsid protein regulate the capsid-RNA interaction and the stability of the virions and affect viral gene expression. Mutational analysis confirmed that changes in modification affected virion stability and the timing of viral infection. The mechanism for modification of the virion has striking parallels to the mechanism of regulation of chromatin packaging by nucleosomes.


Assuntos
Bromovirus/fisiologia , Proteínas do Capsídeo/metabolismo , Processamento de Proteína Pós-Traducional , Bromovirus/ultraestrutura , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Espectrometria de Massas , Fosforilação , Plantas , Vírion/ultraestrutura , Viroses , Replicação Viral
6.
Anal Chem ; 87(20): 10627-34, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26399599

RESUMO

Protein therapeutics are rapidly transforming the pharmaceutical industry. Unlike for small molecule therapeutics, current technologies are challenged to provide the rapid, high-resolution analyses of protein higher order structures needed to ensure drug efficacy and safety. Consequently, significant attention has turned to developing new methods that can quickly, accurately, and reproducibly characterize the three-dimensional structure of protein therapeutics. In this work, we describe a method that uses diethylpyrocarbonate (DEPC) labeling and mass spectrometry to detect three-dimensional structural changes in therapeutic proteins that have been exposed to degrading conditions. Using ß2-microglobulin, immunoglobulin G1, and human growth hormone as model systems, we demonstrate that DEPC labeling can identify both specific protein regions that mediate aggregation and those regions that undergo more subtle structural changes upon mishandling of these proteins. Importantly, DEPC labeling is able to provide information for up to 30% of the surface residues in a given protein, thereby providing excellent structural resolution. Given the simplicity of the DEPC labeling chemistry and the relatively straightforward mass spectral analysis of DEPC-labeled proteins, we expect this method should be amenable to a wide range of protein therapeutics and their different formulations.


Assuntos
Dietil Pirocarbonato/química , Hormônio do Crescimento/química , Imunoglobulina G/química , Microglobulina beta-2/química , Humanos , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular
7.
Methods Mol Biol ; 1297: 225-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25896007

RESUMO

RNA nanotechnology often feature protein RNA complexes. The interaction between proteins and large RNAs are difficult to study using traditional structure-based methods like NMR or X-ray crystallography. RCAP, an approach that uses reversible-cross-linking affinity purification method coupled with mass spectrometry, has been developed to map regions within proteins that contact RNA. This chapter details how RCAP is applied to map protein-RNA contacts within virions.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas de Ligação a RNA/genética , RNA/genética , Sequência de Aminoácidos , Cromatografia de Afinidade , Cristalografia por Raios X , Mapeamento de Peptídeos/métodos , Conformação Proteica , Proteínas de Ligação a RNA/química
8.
J Virol ; 88(16): 9287-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899200

RESUMO

UNLABELLED: The structure of adenovirus outer capsid was revealed recently at 3- to 4-Å resolution (V. Reddy, S. Natchiar, P. Stewart, and G. Nemerow, Science 329:1071-1075, 2010, http://dx.doi.org/10.1126/science.1187292); however, precise details on the function and biochemical and structural features for the inner core still are lacking. Protein V is one the most important components of the adenovirus core, as it links the outer capsid via association with protein VI with the inner DNA core. Protein V is a highly basic protein that strongly binds to DNA in a nonspecific manner. We report the expression of a soluble protein V that exists in monomer-dimer equilibrium. Using reversible cross-linking affinity purification in combination with mass spectrometry, we found that protein V contains multiple DNA binding sites. The binding sites from protein V mediate heat-stable nucleic acid associations, with some of the binding sites possibly masked in the virus by other core proteins. We also demonstrate direct interaction between soluble proteins V and VI, thereby revealing the bridging of the inner DNA core with the outer capsid proteins. These findings are consistent with a model of nucleosome-like structures proposed for the adenovirus core and encapsidated DNA. They also suggest an additional role for protein V in linking the inner nucleic acid core with protein VI on the inner capsid shell. IMPORTANCE: Scant knowledge exists of how the inner core of adenovirus containing its double-stranded DNA (dsDNA) genome and associated proteins is organized. Here, we report a purification scheme for a recombinant form of protein V that allowed analysis of its interactions with the nucleic acid core region. We demonstrate that protein V exhibits stable associations with dsDNA due to the presence of multiple nucleic acid binding sites identified both in the isolated recombinant protein and in virus particles. As protein V also binds to the membrane lytic protein VI molecules, this core protein may serve as a bridge from the inner dsDNA core to the inner capsid shell.


Assuntos
Adenoviridae/genética , Adenoviridae/metabolismo , DNA Viral/metabolismo , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , DNA Viral/genética , Dados de Sequência Molecular , Ligação Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vírion/genética , Vírion/metabolismo
9.
J Mol Biol ; 426(5): 1061-76, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24036424

RESUMO

Brome mosaic virus (BMV) packages its genomic and subgenomic RNAs into three separate viral particles. BMV purified from barley, wheat, and tobacco have distinct relative abundances of the encapsidated RNAs. We seek to identify the basis for the host-dependent differences in viral RNA encapsidation. Sequencing of the viral RNAs revealed recombination events in the 3' untranslated region of RNA1 of BMV purified from barley and wheat, but not from tobacco. However, the relative amounts of the BMV RNAs that accumulated in barley and wheat are similar and RNA accumulation is not sufficient to account for the difference in RNA encapsidation. Virions purified from barley and wheat were found to differ in their isoelectric points, resistance to proteolysis, and contacts between the capsid residues and the RNA. Mass spectrometric analyses revealed that virions from the three hosts had different post-translational modifications that should impact the physiochemical properties of the virions. Another major source of variation in RNA encapsidation was due to the purification of BMV particles to homogeneity. Highly enriched BMV present in lysates had a surprising range of sizes, buoyant densities, and distinct relative amounts of encapsidated RNAs. These results show that the encapsidated BMV RNAs reflect a combination of host effects on the physiochemical properties of the viral capsids and the enrichment of a subset of virions. The previously unexpected heterogeneity in BMV should influence the timing of the infection and also the host innate immune responses.


Assuntos
Bromovirus/fisiologia , Hordeum/virologia , Nicotiana/virologia , RNA de Plantas/genética , RNA Viral/genética , Triticum/virologia , Montagem de Vírus/fisiologia , Regiões 3' não Traduzidas/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Hordeum/genética , Hordeum/metabolismo , Focalização Isoelétrica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Nicotiana/genética , Nicotiana/metabolismo , Triticum/genética , Triticum/metabolismo , Vírion/genética , Replicação Viral
10.
Mol Plant Microbe Interact ; 23(11): 1433-47, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20923351

RESUMO

Brome mosaic virus (BMV) packages its genomic RNAs (RNA1, RNA2, and RNA3) and subgenomic RNA4 into three different particles. However, since the RNAs in the virions have distinct lengths and electrostatic charges, we hypothesize that subsets of the virions should have distinct properties. A glutamine to cysteine substitution at position 120 of the capsid protein (CP) was found to result in a mutant virus named QC that exhibited a dramatically altered ratio of the RNAs in virions. RNA2 was far more abundant than the other RNAs, although the ratios could be affected by the host plant species. RNAs with the QC mutation were competent for replication early in the infection, suggesting that they were either selectively packaged or degraded after packaging. In support of the latter idea, low concentrations of truncated RNA1 that co-migrated with RNA2 were found in the QC virions. Spectroscopic analysis and peptide fingerprinting experiments showed that the QC virus capsid interacted with the encapsidated RNAs differently than did the wild type. Furthermore, wild-type BMV RNA1 was found to be more susceptible to nuclease digestion relative to RNA2 as a function of the buffer pH. Other BMV capsid mutants also had altered ratios of packaged RNAs.


Assuntos
Substituição de Aminoácidos , Bromovirus/genética , Bromovirus/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , RNA Viral/fisiologia , Sequência de Aminoácidos , Regulação Viral da Expressão Gênica/fisiologia , Microscopia Eletrônica , Modelos Moleculares , Mutação , Conformação Proteica , Montagem de Vírus
11.
J Mol Biol ; 391(2): 314-26, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19481091

RESUMO

Viral capsid proteins (CPs) can regulate gene expression and encapsulate viral RNAs. Low-level expression of the brome mosaic virus (BMV) CP was found to stimulate viral RNA accumulation, while higher levels inhibited translation and BMV RNA replication. Regulation of translation acts through an RNA element named the B box, which is also critical for the replicase assembly. The BMV CP has also been shown to preferentially bind to an RNA element named SLC that contains the core promoter for genomic minus-strand RNA synthesis. To further elucidate CP interaction with RNA, we used a reversible cross-linking-peptide fingerprinting assay to identify peptides in the capsid that contact the SLC, the B-box RNA, and the encapsidated RNA. Transient expression of three mutations made in residues within or close by the cross-linked peptides partially released the normal inhibition of viral RNA accumulation in agroinfiltrated Nicotiana benthamiana. Interestingly, two of the mutants, R142A and D148A, were found to retain the ability to down-regulate reporter RNA translation. These two mutants formed viral particles in inoculated leaves, but only R142A was able to move systemically in the inoculated plant. The R142A CP was found to have higher affinities for SLC and the B box compared with those of wild-type CP and to alter contacts to the RNA in the virion. These results better define how the BMV CP can interact with RNA and regulate different viral processes.


Assuntos
Bromovirus/metabolismo , Proteínas do Capsídeo/metabolismo , RNA Viral/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Bromovirus/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Dados de Sequência Molecular , Mutação , Conformação Proteica , Nicotiana/virologia , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...