Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Global Biogeochem Cycles ; 35(6): e2021GB007000, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34219915

RESUMO

We study the drivers behind the global atmospheric methane (CH4) increase observed after 2006. Candidate emission and sink scenarios are constructed based on proposed hypotheses in the literature. These scenarios are simulated in the TM5 tracer transport model for 1984-2016 to produce three-dimensional fields of CH4 and δ 13C-CH4, which are compared with observations to test the competing hypotheses in the literature in one common model framework. We find that the fossil fuel (FF) CH4 emission trend from the Emissions Database for Global Atmospheric Research 4.3.2 inventory does not agree with observed δ 13C-CH4. Increased FF CH4 emissions are unlikely to be the dominant driver for the post-2006 global CH4 increase despite the possibility for a small FF emission increase. We also find that a significant decrease in the abundance of hydroxyl radicals (OH) cannot explain the post-2006 global CH4 increase since it does not track the observed decrease in global mean δ 13C-CH4. Different CH4 sinks have different fractionation factors for δ 13C-CH4, thus we can investigate the uncertainty introduced by the reaction of CH4 with tropospheric chlorine (Cl), a CH4 sink whose abundance, spatial distribution, and temporal changes remain uncertain. Our results show that including or excluding tropospheric Cl as a 13 Tg/year CH4 sink in our model changes the magnitude of estimated fossil emissions by ∼20%. We also found that by using different wetland emissions based on a static versus a dynamic wetland area map, the partitioning between FF and microbial sources differs by 20 Tg/year, ∼12% of estimated fossil emissions.

2.
J Geophys Res Atmos ; 124(6): 2932-2945, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31218150

RESUMO

Several recent studies from both Greenland and Antarctica have reported significant changes in the water isotopic composition of near-surface snow between precipitation events. These changes have been linked to isotopic exchange with atmospheric water vapor and sublimation-induced fractionation, but the processes are poorly constrained by observations. Understanding and quantifying these processes are crucial to both the interpretation of ice core climate proxies and the formulation of isotope-enabled general circulation models. Here, we present continuous measurements of the water isotopic composition in surface snow and atmospheric vapor together with near-surface atmospheric turbulence and snow-air latent and sensible heat fluxes, obtained at the East Greenland Ice-Core Project drilling site in summer 2016. For two 4-day-long time periods, significant diurnal variations in atmospheric water isotopologues are observed. A model is developed to explore the impact of this variability on the surface snow isotopic composition. Our model suggests that the snow isotopic composition in the upper subcentimeter of the snow exhibits a diurnal variation with amplitudes in δ18O and δD of ~2.5‰ and ~13‰, respectively. As comparison, such changes correspond to 10-20% of the magnitude of seasonal changes in interior Greenland snow pack isotopes and of the change across a glacial-interglacial transition. Importantly, our observation and model results suggest, that sublimation-induced fractionation needs to be included in simulations of exchanges between the vapor and the snow surface on diurnal timescales during summer cloud-free conditions in northeast Greenland.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...