Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251658

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) plays critical roles in host cell entry. Non-synonymous substitutions affecting S are not uncommon and have become fixed in a number of SARS-CoV-2 lineages. A subset of such mutations enable escape from neutralizing antibodies or are thought to enhance transmission through mechanisms such as increased affinity for the cell entry receptor, ACE2. Independent genomic surveillance programs based in New Mexico and Louisiana contemporaneously detected the rapid rise of numerous clade 20G (lineage B.1.2) infections carrying a Q677P substitution in S. The variant was first detected in the US on October 23, yet between 01 Dec 2020 and 19 Jan 2021 it rose to represent 27.8% and 11.3% of all SARS-CoV-2 genomes sequenced from Louisiana and New Mexico, respectively. Q677P cases have been detected predominantly in the south central and southwest United States; as of 03 Feb 2021, GISAID data show 499 viral sequences of this variant from the USA. Phylogenetic analyses revealed the independent evolution and spread of at least six distinct Q677H sub-lineages, with first collection dates ranging from mid August to late November, 2020. Four 677H clades from clade 20G (B.1.2), 20A (B.1.234), and 20B (B.1.1.220, and B.1.1.222) each contain roughly 100 or fewer sequenced cases, while a distinct pair of clade 20G clusters are represented by 754 and 298 cases, respectively. Although sampling bias and founder effects may have contributed to the rise of S:677 polymorphic variants, the proximity of this position to the polybasic cleavage site at the S1/S2 boundary are consistent with its potential functional relevance during cell entry, suggesting parallel evolution of a trait that may confer an advantage in spread or transmission. Taken together, our findings demonstrate simultaneous convergent evolution, thus providing an impetus to further evaluate S:677 polymorphisms for effects on proteolytic processing, cell tropism, and transmissibility.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251235

RESUMO

The emergence of the early COVID-19 epidemic in the United States (U.S.) went largely undetected, due to a lack of adequate testing and mitigation efforts. The city of New Orleans, Louisiana experienced one of the earliest and fastest accelerating outbreaks, coinciding with the annual Mardi Gras festival, which went ahead without precautions. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large, crowded events may have accelerated early transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana initially had limited sequence diversity compared to other U.S. states, and that one successful introduction of SARS-CoV-2 led to almost all of the early SARS-CoV-2 transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras and that the festival dramatically accelerated transmission, eventually leading to secondary localized COVID-19 epidemics throughout the Southern U.S.. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate COVID-19 epidemics on a local and regional scale.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-117069

RESUMO

The set of mutations observed at the outset of the SARS-CoV-2 pandemic may illuminate how the virus will adapt to humans as it continues to spread. Viruses are expected to quickly acquire beneficial mutations upon jumping to a new host species. Advantageous nucleotide substitutions can be identified by their parallel occurrence in multiple independent lineages and are likely to result in changes to protein sequences. Here we show that SARS-CoV-2 is acquiring mutations more slowly than expected for neutral evolution, suggesting purifying selection is the dominant mode of evolution during the initial phase of the pandemic. However, several parallel mutations arose in multiple independent lineages and may provide a fitness advantage over the ancestral genome. We propose plausible reasons for several of the most frequent mutations. The absence of mutations in other genome regions suggests essential components of SARS-CoV-2 that could be the target of drug development. Overall this study provides genomic insights into how SARS-CoV-2 has adapted and will continue to adapt to humans. SUMMARYIn this study we sought signals of evolution to identify how the SARS-CoV-2 genome has adapted at the outset of the COVID-19 pandemic. We find that the genome is largely undergoing purifying selection that maintains its ancestral sequence. However, we identified multiple positions on the genome that appear to confer an adaptive advantage based on their repeated evolution in independent lineages. This information indicates how SARS-CoV-2 will evolve as it diversifies in an increasing number of hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...