Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2667: 123-127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37145280

RESUMO

The human gastrointestinal (GI) tract is home to trillions of commensal organisms. Some of these microbes have the capacity to become pathogenic following changes in the microenvironment and/or host physiology. Candida albicans is one such organism, usually inhabiting the GI tract as a harmless commensal in most individuals but with the potential to cause serious infection. Risk factors for C. albicans GI infections include the use of antibiotics, neutropenia, and abdominal surgery. Understanding how commensal organisms can transform into life-threatening pathogens is an important area of research. Mouse models of fungal GI colonization provide an essential platform to study the mechanisms involved in the transition of C. albicans from benign commensal to dangerous pathogen. This chapter presents a novel method of stable, long-term colonization of the murine GI tract with Candida albicans.


Assuntos
Candida albicans , Candidíase , Animais , Camundongos , Humanos , Candidíase/microbiologia , Antibacterianos/uso terapêutico , Trato Gastrointestinal , Simbiose
2.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377664

RESUMO

Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, ß-glucan-binding receptor, Dectin-1. The patient's PBMCs failed to produce TNF-α and IL-1ß in response to ß-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1ß and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1ß-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi.


Assuntos
Feoifomicose , beta-Glucanas , Animais , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Sinalização CARD/genética , Lectinas Tipo C/genética , Macrófagos/metabolismo , Feoifomicose/microbiologia , Fator de Necrose Tumoral alfa/genética
3.
Ann Rheum Dis ; 75(7): 1386-91, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26275430

RESUMO

BACKGROUND: Myeloid inhibitory C-type lectin-like receptor (MICL, Clec12A) is a C-type lectin receptor (CLR) expressed predominantly by myeloid cells. Previous studies have suggested that MICL is involved in controlling inflammation. OBJECTIVE: To determine the role of this CLR in inflammatory pathology using Clec12A(-/-) mice. METHODS: Clec12A(-/-) mice were generated commercially and primarily characterised using the collagen antibody-induced arthritis (CAIA) model. Mechanisms and progress of disease were characterised by clinical scoring, histology, flow cytometry, irradiation bone-marrow chimera generation, administration of blocking antibodies and in vivo imaging. Characterisation of MICL in patients with rheumatoid arthritis (RA) was determined by immunohistochemistry and single nucleotide polymorphism analysis. Anti-MICL antibodies were detected in patient serum by ELISA and dot-blot analysis. RESULTS: MICL-deficient animals did not present with pan-immune dysfunction, but exhibited markedly exacerbated inflammation during CAIA, owing to the inappropriate activation of myeloid cells. Polymorphisms of MICL were not associated with disease in patients with RA, but this CLR was the target of autoantibodies in a subset of patients with RA. In wild-type mice the administration of such antibodies recapitulated the Clec12A(-/-) phenotype. CONCLUSIONS: MICL plays an essential role in regulating inflammation during arthritis and is an autoantigen in a subset of patients with RA. These data suggest an entirely new mechanism underlying RA pathogenesis, whereby the threshold of myeloid cell activation can be modulated by autoantibodies that bind to cell membrane-expressed inhibitory receptors.


Assuntos
Artrite Experimental/genética , Artrite Reumatoide/genética , Lectinas Tipo C/fisiologia , Receptores Mitogênicos/fisiologia , Animais , Artrite Reumatoide/sangue , Artrite Reumatoide/etiologia , Artrite Reumatoide/patologia , Autoanticorpos/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Lectinas Tipo C/deficiência , Lectinas Tipo C/imunologia , Camundongos , Células Mieloides/metabolismo , Polimorfismo Genético , Receptores Mitogênicos/deficiência , Receptores Mitogênicos/imunologia , Membrana Sinovial/patologia
5.
PLoS One ; 10(8): e0134219, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26261989

RESUMO

Asthma is a heterogeneous disease whose etiology is poorly understood but is likely to involve innate responses to inhaled microbial components that are found in allergens. The influence of these components on pulmonary inflammation has been largely studied in the context of individual agonists, despite knowledge that they can have synergistic effects when used in combination. Here we have explored the effects of LPS and ß-glucan, two commonly-encountered microbial agonists, on the pathogenesis of allergic and non-allergic respiratory responses to house dust mite allergen. Notably, sensitization with these microbial components in combination acted synergistically to promote robust neutrophilic inflammation, which involved both Dectin-1 and TLR-4. This pulmonary neutrophilic inflammation was corticosteroid-refractory, resembling that found in patients with severe asthma. Thus our results provide key new insights into how microbial components influence the development of respiratory pathology.


Assuntos
Asma/etiologia , Lipopolissacarídeos/imunologia , Neutrófilos/imunologia , beta-Glucanas/imunologia , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , Modelos Animais de Doenças , Resistência a Medicamentos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Pyroglyphidae/imunologia , Esteroides/administração & dosagem , Esteroides/farmacologia , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
6.
Cell Microbiol ; 17(4): 445-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25346172

RESUMO

The ability of Candida albicans to cause disease is associated with its capacity to undergo morphological transition between yeast and filamentous forms, but the role of morphology in colonization and dissemination from the gastrointestinal (GI) tract remains poorly defined. To explore this, we made use of wild-type and morphological mutants of C. albicans in an established model of GI tract colonization, induced following antibiotic treatment of mice. Our data reveal that GI tract colonization favours the yeast form of C. albicans, that there is constitutive low level systemic dissemination in colonized mice that occurs irrespective of fungal morphology, and that colonization is not controlled by Th17 immunity in otherwise immunocompetent animals. These data provide new insights into the mechanisms of pathogenesis and commensalism of C. albicans, and have implications for our understanding of human disease.


Assuntos
Candida albicans/citologia , Candida albicans/fisiologia , Candidíase/imunologia , Candidíase/microbiologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Células Th17/imunologia , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Modelos Animais de Doenças , Camundongos
7.
PLoS Pathog ; 10(4): e1004050, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24722226

RESUMO

Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. We analysed the immunological properties of purified chitin particles derived from the opportunistic human fungal pathogen Candida albicans, which led to the selective secretion of the anti-inflammatory cytokine IL-10. We identified NOD2, TLR9 and the mannose receptor as essential fungal chitin-recognition receptors for the induction of this response. Chitin reduced LPS-induced inflammation in vivo and may therefore contribute to the resolution of the immune response once the pathogen has been defeated. Fungal chitin also induced eosinophilia in vivo, underpinning its ability to induce asthma. Polymorphisms in the identified chitin receptors, NOD2 and TLR9, predispose individuals to inflammatory conditions and dysregulated expression of chitinases and chitinase-like binding proteins, whose activity is essential to generate IL-10-inducing fungal chitin particles in vitro, have also been linked to inflammatory conditions and asthma. Chitin recognition is therefore critical for immune homeostasis and is likely to have a significant role in infectious and allergic disease.


Assuntos
Candida albicans/química , Quitina/imunologia , Interleucina-10/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Receptor Toll-Like 9/imunologia , Animais , Asma/genética , Asma/imunologia , Asma/patologia , Candida albicans/imunologia , Quitina/química , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-10/genética , Masculino , Camundongos , Proteína Adaptadora de Sinalização NOD2/genética , Receptor Toll-Like 9/genética
8.
PLoS Pathog ; 9(4): e1003315, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637604

RESUMO

The ß-glucan receptor Dectin-1 is a member of the C-type lectin family and functions as an innate pattern recognition receptor in antifungal immunity. In both mouse and man, Dectin-1 has been found to play an essential role in controlling infections with Candida albicans, a normally commensal fungus in man which can cause superficial mucocutaneous infections as well as life-threatening invasive diseases. Here, using in vivo models of infection, we show that the requirement for Dectin-1 in the control of systemic Candida albicans infections is fungal strain-specific; a phenotype that only becomes apparent during infection and cannot be recapitulated in vitro. Transcript analysis revealed that this differential requirement for Dectin-1 is due to variable adaptation of C. albicans strains in vivo, and that this results in substantial differences in the composition and nature of their cell walls. In particular, we established that differences in the levels of cell-wall chitin influence the role of Dectin-1, and that these effects can be modulated by antifungal drug treatment. Our results therefore provide substantial new insights into the interaction between C. albicans and the immune system and have significant implications for our understanding of susceptibility and treatment of human infections with this pathogen.


Assuntos
Antifúngicos/farmacologia , Candida albicans/imunologia , Parede Celular/efeitos dos fármacos , Lectinas Tipo C/imunologia , Animais , Candida albicans/genética , Caspofungina , Parede Celular/química , Quitina/metabolismo , Equinocandinas/farmacologia , Lectinas Tipo C/genética , Lipopeptídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Reconhecimento de Padrão/imunologia , beta-Glucanas/metabolismo
9.
Infect Immun ; 80(12): 4216-22, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22988015

RESUMO

Candida albicans is normally found as a commensal microbe, commonly colonizing the gastrointestinal tract in humans. However, this fungus can also cause mucosal and systemic infections once immune function is compromised. Dectin-1 is an innate pattern recognition receptor essential for the control of fungal infections in both mice and humans; however, its role in the control of C. albicans colonization of the gastrointestinal tract has not been defined. Here, we demonstrate that in mice dectin-1 is essential for the control of gastrointestinal invasion during systemic infection, with dectin-1 deficiency associating with impaired fungal clearance and dysregulated cytokine production. Surprisingly, however, following oral infection, dectin-1 was not required for the control of mucosal colonization of the gastrointestinal tract, in terms of either fungal burdens or cytokine response. Thus, in mice, dectin-1 is essential for controlling systemic infection with C. albicans but appears to be redundant for the control of gastrointestinal colonization.


Assuntos
Candida albicans/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Lectinas Tipo C/metabolismo , Mucosa/microbiologia , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/isolamento & purificação , Candida albicans/patogenicidade , Candidíase/imunologia , Candidíase/microbiologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL
10.
Cytokine ; 58(1): 89-99, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21924922

RESUMO

Fungi are the cause of opportunistic infections, predominantly in immunocompromised individuals although, primary fungal infections can occur in apparently healthy individuals. Successful host defence requires an effective innate and adaptive immune response. Central to host immune responses are the induction of cytokines; the signals which help to activate the innate immune system and which play a central role in directing the development of pathogen-specific immunity. C-type lectins play a central role in the recognition and shaping of immune responses to fungal pathogens, in part, through the induction and modulation of cytokine responses. Understanding which cytokines induce protective responses to these pathogens and how C-type lectins and other receptors direct cytokine production may allow development of novel antifungal therapies. Here we review the C-type lectins, their influence on cytokine production and subsequent immune responses in antifungal immunity.


Assuntos
Citocinas/imunologia , Fungos/imunologia , Lectinas Tipo C/imunologia , Animais , Moléculas de Adesão Celular/imunologia , Citocinas/biossíntese , Humanos , Imunidade Inata/fisiologia , Pneumopatias Fúngicas/imunologia , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Proteínas de Membrana/imunologia , Camundongos , Micoses/imunologia , Receptores de Superfície Celular/imunologia
11.
Cytokine Growth Factor Rev ; 21(6): 405-12, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21075040

RESUMO

Th17 cells are a recently discovered subset of T helper cells characterised by the release of IL-17, and are thought to be important for mobilization of immune responses against microbial pathogens, but which also contribute to the development of autoimmune diseases. The identification of C-type lectin receptors which are capable of regulating the balance between Th1 and Th17 responses has been of particular recent interest, which they control, in part, though the release of Th17 inducing cytokines. Many of these receptors recognise fungi, and other pathogens, and play key roles in driving the development of protective anti-microbial immunity. Here we will review the C-type lectins that have been linked to Th17 type responses and will briefly examine the role of Th17 responses in murine and human anti-fungal immunity.


Assuntos
Fungos/imunologia , Interleucina-17/imunologia , Lectinas Tipo C/imunologia , Células Th17/fisiologia , Animais , Células Apresentadoras de Antígenos/imunologia , Doenças Autoimunes/imunologia , Proteínas Adaptadoras de Sinalização CARD/deficiência , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Síndrome de Job/imunologia , Lectinas Tipo C/fisiologia , Receptor de Manose , Lectinas de Ligação a Manose/fisiologia , Proteínas de Membrana/fisiologia , Camundongos , Micoses/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/fisiologia , Receptores de Superfície Celular/fisiologia , Receptores de Reconhecimento de Padrão/fisiologia , Fatores de Transcrição/fisiologia , Proteína AIRE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...