Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Planta ; 225(6): 1421-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17160388

RESUMO

The presence of 2 mM bicarbonate in the incubation medium induced stomatal closure in abaxial epidermis of Arabidopsis. Exposure to 2 mM bicarbonate elevated the levels of H(2)O(2) in guard cells within 5 min, as indicated by the fluorescent probe, dichlorofluorescein diacetate (H(2)DCF-DA). Bicarbonate-induced stomatal closure as well as H(2)O(2) production were restricted by exogenous catalase or diphenylene iodonium (DPI, an inhibitor of NAD(P)H oxidase). The reduced sensitivity of stomata to bicarbonate and H(2)O(2) production in homozygous atrbohD/F double mutant of Arabidopsis confirmed that NADP(H) oxidase is involved during bicarbonate induced ROS production in guard cells. The production of H(2)O(2) was quicker and greater with ABA than that with bicarbonate. Such pattern of H(2)O(2) production may be one of the reasons for ABA being more effective than bicarbonate, in promoting stomatal closure. Our results demonstrate that H(2)O(2) is an essential secondary messenger during bicarbonate induced stomatal closure in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , Bicarbonatos/farmacologia , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Ácido Abscísico/farmacologia , Androstadienos/farmacologia , Cromonas/farmacologia , Morfolinas/farmacologia , NADPH Oxidases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fatores de Tempo , Wortmanina
2.
Biochimie ; 88(11): 1751-65, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16797112

RESUMO

Transcriptional regulation in response to cadmium treatment was investigated in both roots and leaves of Arabidopsis, using the whole genome CATMA microarray containing at least 24,576 independent probe sets. Arabidopsis plants were hydroponically treated with low (5 microM) or high (50 microM) cadmium concentrations during 2, 6, and 30 hours. At each time point, Cd level was determined using ICP-AES showing that both plant tissues are able to accumulate the heavy metal. RT-PCR of eight randomly selected genes confirmed the reliability of our microarray results. Analyses of response profiles demonstrate the existence of a regulatory network that differentially modulates gene expression in a tissue- and kinetic-specific manner in response to cadmium. One of the main response observed in roots was the induction of genes involved in sulfur assimilation-reduction and glutathione (GSH) metabolism. In addition, HPLC analysis of GSH and phytochelatin (PC) content shows a transient decrease of GSH after 2 and 6 h of metal treatment in roots correlated with an increase of PC contents. Altogether, our results suggest that to cope with cadmium, plants activate the sulfur assimilation pathway by increasing transcription of related genes to provide an enhanced supply of GSH for PC biosynthesis. Interestingly, in leaves an early induction of several genes encoding enzymes involved in the biosynthesis of phenylpropanoids was observed. Finally, our results provide new insights to understand the molecular mechanisms involved in transcriptional regulation in response to cadmium exposure in plants.


Assuntos
Arabidopsis/genética , Cádmio/farmacologia , Perfilação da Expressão Gênica , Genoma de Planta , Raízes de Plantas/genética , Brotos de Planta/genética , Transcrição Gênica , Arabidopsis/efeitos dos fármacos , DNA de Plantas/genética , Cinética , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Biochimie ; 88(11): 1651-63, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16806635

RESUMO

The presence of heavy metal(loid)s in soils and waters is an important issue with regards to human health. Taking into account speciation problems, in the first part of this report, we investigated under identical growth conditions, yeast tolerance to a set of 15 cytotoxic metal(loid)s and radionuclides. The yeast cadmium factor 1 (YCF1) is an ATP-Binding Cassette transporter mediating the glutathione detoxification of heavy metals. In the second part, metal(loid)s that could be handled by YCF1 and a possible re-localisation of the transporter after heavy metal exposure were evaluated. YCF1 and a C-terminal GFP fusion, YCF1-GFP, were overexpressed in wild-type and Deltaycf1 strains. Both forms were functional, conferring a tolerance to Cd, Sb, As, Pb, Hg but not to Ni, Zn, Cu, Ag, Se, Te, Cr, Sr, Tc, U. Confocal experiments demonstrated that during exposure to cytotoxic metals, the localisation of YCF1-GFP was restricted to the yeast vacuolar membrane. In the last part, the role of glutathione in this resistance mechanism to metal(loid)s was studied. In the presence of heavy metals, application of buthionine sulfoximine (BSO), a well-known inhibitor of gamma-glutamylcysteine synthetase, led to a decrease in the cytosolic pool of GSH and to a limitation of yeast growth. Surprisingly, BSO was able to phenocopy the deletion of gamma-glutamylcysteine synthetase after exposure to Cd but not to Sb or As. In the genetic context of gsh1 and gsh2 yeast mutants, the critical role of GSH for Cd, As, Sb and Hg tolerance was compared to that of wild-type and Deltaycf1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Butionina Sulfoximina/farmacologia , Glutationa/metabolismo , Metais/toxicidade , Radioisótopos/toxicidade , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Inativação Metabólica , Cloreto de Mercúrio/toxicidade , Plasmídeos , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
4.
FEBS Lett ; 494(1-2): 15-8, 2001 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-11297726

RESUMO

The plasma membrane guard cell slow anion channel is a key element at the basis of water loss control in plants allowing prolonged osmolite efflux necessary for stomatal closure. This channel has been extensively studied by electrophysiological approaches but its molecular identification is still lacking. Recently, we described that this channel was sharing some similarities with the mammalian ATP-binding cassette protein, cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel [Leonhardt, N. et al. (1999) Plant Cell 11, 1141-1151]. Here, using the patch-clamp technique and a bioassay, consisting in the observation of the change in guard cell protoplasts volume, we demonstrated that a functional antibody raised against the mammalian CFTR prevented ABA-induced guard cell protoplasts shrinking and partially inhibited the slow anion current. Moreover, this antibody immunoprecipitated a polypeptide from guard cell protein extracts and immunolabeled stomata in Vicia faba leaf sections. These results indicate that the guard cell slow anion channel is, or is closely controlled by a polypeptide, exhibiting one epitope shared with the mammalian CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Canais Iônicos/metabolismo , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Humanos , Canais Iônicos/fisiologia , Peptídeos/metabolismo , Proteínas de Plantas/fisiologia , Protoplastos/fisiologia , Rosales
5.
Plant J ; 25(3): 295-303, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11208021

RESUMO

The Arabidopsis ABI1 and ABI2 genes encode two protein serine/threonine phosphatases 2C (PP2C). These genes have been originally identified by the dominant mutations abi1--1 and abi2--1, which reduce the plant's responsiveness to the hormone abscisic acid (ABA). However, recessive mutants of ABI1 were recently shown to be supersensitive to ABA, which demonstrated that the ABI1 phosphatase is a negative regulator of ABA signalling. We report here the isolation and characterisation of the first reduction-of-function allele of ABI2, abi2--1R1. The in vitro phosphatase activity of the abi2--1R1 protein is approximately 100-fold lower than that of the wild-type ABI2 protein. Abi2--1R1 plants displayed a wild-type ABA sensitivity. However, doubly mutant plants combining the abi2--1R1 allele and a loss-of-function allele at the ABI1 locus were more responsive to ABA than each of the parental single mutants. These data indicate that the wild-type ABI2 phosphatase is a negative regulator of ABA signalling, and that the ABI1 and ABI2 phosphatases have overlapping roles in controlling ABA action. Measurements of PP2C activity in plant extracts showed that the phosphatase activity of ABI1 and ABI2 increases in response to ABA. These results suggest that ABI1 and ABI2 act in a negative feedback regulatory loop of the ABA signalling pathway.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis , Retroalimentação , Fosfoproteínas Fosfatases/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Primers do DNA , Mutação , Fosforilação
6.
Plant Cell ; 11(6): 1141-52, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10368184

RESUMO

In animal cells, ATP binding cassette (ABC) proteins are a large family of transporters that includes the sulfonylurea receptor and the cystic fibrosis transmembrane conductance regulator (CFTR). These two ABC proteins possess an ion channel activity and bind specific sulfonylureas, such as glibenclamide, but homologs have not been identified in plant cells. We recently have shown that there is an ABC protein in guard cells that is involved in the control of stomatal movements and guard cell outward K+ current. Because the CFTR, a chloride channel, is sensitive to glibenclamide and able to interact with K+ channels, we investigated its presence in guard cells. Potent CFTR inhibitors, such as glibenclamide and diphenylamine-2-carboxylic acid, triggered stomatal opening in darkness. The guard cell protoplast slow anion current that was recorded using the whole-cell patch-clamp technique was inhibited rapidly by glibenclamide in a dose-dependent manner; the concentration producing half-maximum inhibition was at 3 &mgr;M. Potassium channel openers, which bind to and act through the sulfonylurea receptor in animal cells, completely suppressed the stomatal opening induced by glibenclamide and recovered the glibenclamide-inhibited slow anion current. Abscisic acid is known to regulate slow anion channels and in our study was able to relieve glibenclamide inhibition of slow anion current. Moreover, in epidermal strip bioassays, the stomatal closure triggered by Ca2+ or abscisic acid was reversed by glibenclamide. These results suggest that the slow anion channel is an ABC protein or is tightly controlled by such a protein that interacts with the abscisic acid signal transduction pathway in guard cells.

7.
Plant Physiol ; 120(2): 605-14, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10364413

RESUMO

We have investigated the stomatal and phototropic responses to blue light of a number of single and double mutants at various loci that encode proteins involved in blue-light responses in Arabidopsis. The stomatal responses of light-grown mutant plants (cry1, cry2, nph1, nph3, nph4, cry1cry2, and nph1cry1) did not differ significantly from those of their wild-type counterparts. Second positive phototropic responses of etiolated mutant seedlings, cry1, cry2, cry1cry2, and npq1-2, were also similar to those of their wild-type counterparts. Although npq1 and single and double cry1cry2 mutants showed somewhat reduced amplitude for first positive phototropism, threshold, peak, and saturation fluence values for first positive phototropic responses of etiolated seedlings did not differ from those of wild-type seedlings. Similar to the cry1cry2 double mutants and to npq1-2, a phyAphyB mutant showed reduced curvature but no change in the position or shape of the fluence-response curve. By contrast, the phototropism mutant nph1-5 failed to show phototropic curvature under any of the irradiation conditions used in the present study. We conclude that the chromoproteins cry1, cry2, nph1, and the blue-light photoreceptor for the stomatal response are genetically separable. Moreover, these photoreceptors appear to activate separate signal transduction pathways.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Transdução de Sinais , Arabidopsis/genética , Luz , Mutação , Fosforilação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Fototropismo/genética , Fototropismo/fisiologia , Fototropismo/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
8.
Pflugers Arch ; 436(6): 920-7, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9799408

RESUMO

More electrophysiological studies have been carried out on guard cells than on any other cell type of vascular plants. The characterization of their ion channels has been achieved using mainly the whole-cell patch-clamp technique applied to guard-cell protoplasts. The aim of this study was to obtain recordings of ion channel currents in intact guard cells and especially of slow anion channels of Arabidopsis thaliana, a species of fundamental genetic interest. Application of the discontinuous single-electrode voltage-clamp technique enabled the first characterization of K+ currents in Commelina communis and of slow anion currents in C. communis and A. thaliana in intact guard cells to be made. Inward K+ channels from A. thaliana were inhibited by external application of tetraethylammonium (TEA) or Ca2+. In the presence of K+ channel blockers, slow anion channel currents were elicited in almost all guard cells tested and were confirmed by the application of anion channel blockers. In A. thaliana, only anthracene-9 carboxylic acid was able to inhibit slow anion currents, to promote stomatal opening in the dark and to reverse the effect of 25 microM abscisic acid under light. Use of a single microelectrode and preservation of cell integrity make this technique well suited for the study of ion channel regulation in species that have guard cell protoplasts with which it is difficult to form good seals.


Assuntos
Ânions , Arabidopsis/citologia , Arabidopsis/fisiologia , Canais Iônicos/fisiologia , Cloreto de Cálcio/farmacologia , Condutividade Elétrica , Fabaceae/citologia , Fabaceae/fisiologia , Microeletrodos , Técnicas de Patch-Clamp , Plantas Medicinais , Canais de Potássio/fisiologia , Cloreto de Potássio/farmacologia
9.
Biochim Biophys Acta ; 1369(1): 7-13, 1998 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-9528668

RESUMO

A cDNA encoding a putative ATP-binding cassette (ABC) transporter from Arabidopsis was cloned and sequenced based on an EST clone homologous to ABC sequences in other species. The cDNA is 5.5 kb long and contains an ORF encoding a 1623 amino acids protein. This sequence is the first MRP-like protein found in plants.


Assuntos
Arabidopsis/genética , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Filogenia
10.
Proc Natl Acad Sci U S A ; 94(25): 14156-61, 1997 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-9391169

RESUMO

Limitation of water loss and control of gas exchange is accomplished in plant leaves via stomatal guard cells. Stomata open in response to light when an increase in guard cell turgor is triggered by ions and water influx across the plasma membrane. Recent evidence demonstrating the existence of ATP-binding cassette proteins in plants led us to analyze the effect of compounds known for their ability to modulate ATP-sensitive potassium channels (K-ATP) in animal cells. By using epidermal strip bioassays and whole-cell patch-clamp experiments with Vicia faba guard cell protoplasts, we describe a pharmacological profile that is specific for the outward K+ channel and very similar to the one described for ATP-sensitive potassium channels in mammalian cells. Tolbutamide and glibenclamide induced stomatal opening in bioassays and in patch-clamp experiments, a specific inhibition of the outward K+ channel by these compounds was observed. Conversely, application of potassium channel openers such as cromakalim or RP49356 triggered stomatal closure. An apparent competition between sulfonylureas and potassium channel openers occurred in bioassays, and outward potassium currents, previously inhibited by glibenclamide, were partially recovered after application of cromakalim. By using an expressed sequence tag clone from an Arabidopsis thaliana homologue of the sulfonylurea receptor, a 7-kb transcript was detected by Northern blot analysis in guard cells and other tissues. Beside the molecular evidence recently obtained for the expression of ATP-binding cassette protein transcripts in plants, these results give pharmacological support to the presence of a sulfonylurea-receptor-like protein in the guard-cell plasma membrane tightly involved in the outward potassium channel regulation during stomatal movements.

11.
Plant Physiol ; 109(2): 491-497, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12228607

RESUMO

Previous studies indicate that a continual source of adenosine 5[prime]-triphosphate is required for both opening and closing of stomata. However, vanadate (Na3VO4 at 500 [mu]M) as well as a light/dark transition induced stomatal closing in epidermal peels of Commelina communis L., showing that the stoppage or even the decrease of the activity of the plasma membrane H+-adenosine 5[prime]-triphosphatase is sufficient to induce stomatal closure. Furthermore, stomatal closing in response to Na3VO4 or a light/dark transition was suppressed by inhibitors of metabolism (10 [mu]M carbonyl cyanide m-chlorophenylhydrazone) and of protein kinases (20 [mu]M 1-[5-iodonaphthalene-1-sulfonyl]-1H-hexa-hydro-1,4-diaz-epine), calmodulin antagonists (20 [mu]M N-[6-aminohexyl]-5-chloro-1-naphthalenesulfonamide), and the anion channel blocker 5-nitro-2,3-phenylpropyllamino benzoic acid (50 [mu]M). These data suggest that the slow, outward rectifying anion channel, whose opening would be related to the membrane potential, and at least one step requiring a protein phosphorylation by a Ca2+-calmodulin-dependent protein kinase of the myosin light chain kinase type might be implicated in the induction of stomatal closing by vanadate or a light/dark transition.

12.
Plant Physiol ; 98(1): 34-8, 1992 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16668634

RESUMO

Guard cell protoplasts from Commelina communis L. illuminated with red light responded to a blue light pulse by an H(+) extrusion which lasted for about 10 minutes. This proton extrusion was accompanied by an O(2) uptake with a 4H(+) to O(2) ratio. The response to blue light was nil in darkness without a preillumination period of red light and increased with the duration of the red light illumination until about 40 minutes. However, acidification in response to a pulse of blue light was obtained in darkness when external NADH (1 millimolar) was added to the incubation medium, suggesting that redox equivalents necessary for the expression of the response to blue light in darkness may be supplied via red light. In accordance with this hypothesis, the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (10 micromolar) decreased the acidification in response to blue light more efficiently when it was added before red light illumination than before the blue light pulse. In the presence of hexacyanoferrate, the acidification in response to a blue light pulse was partly inhibited (53% of control), suggesting a competition for reducing power between ferricyanide reduction and the response to blue light.

13.
Plant Physiol ; 95(2): 636-41, 1991 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16668030

RESUMO

A mass spectrometric method combining (16)O/(18)O and (12)C/(13)C isotopes was used to quantify the unidirectional fluxes of O(2) and CO(2) during a dark to light transition for guard cell protoplasts and mesophyll cell protoplasts of Commelina communis L. In darkness, O(2) uptake and CO(2) evolution were similar on a protein basis. Under light, guard cell protoplasts evolved O(2) (61 micromoles of O(2) per milligram of chlorophyll per hour) almost at the same rate as mesophyll cell protoplasts (73 micromoles of O(2) per milligram of chlorophyll per hour). However, carbon assimilation was totally different. In contrast with mesophyll cell protoplasts, guard cell protoplasts were able to fix CO(2) in darkness at a rate of 27 micromoles of CO(2) per milligram of chlorophyll per hour, which was increased by 50% in light. At the onset of light, a delay observed for guard cell protoplasts between O(2) evolution and CO(2) fixation and a time lag before the rate of saturation suggested a carbon metabolism based on phosphoenolpyruvate carboxylase activity. Under light, CO(2) evolution by guard cell protoplasts was sharply decreased (37%), while O(2) uptake was slowly inhibited (14%). A control of mitochondrial activity by guard cell chloroplasts under light via redox equivalents and ATP transfer in the cytosol is discussed. From this study on protoplasts, we conclude that the energy produced at the chloroplast level under light is not totally used for CO(2) assimilation and may be dissipated for other purposes such as ion uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...