Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(21): 21240-21250, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37796248

RESUMO

Aluminum nitride (AlN) is one of the few electrically insulating materials with excellent thermal conductivity, but high-quality films typically require exceedingly hot deposition temperatures (>1000 °C). For thermal management applications in dense or high-power integrated circuits, it is important to deposit heat spreaders at low temperatures (<500 °C), without affecting the underlying electronics. Here, we demonstrate 100 nm to 1.7 µm thick AlN films achieved by low-temperature (<100 °C) sputtering, correlating their thermal properties with their grain size and interfacial quality, which we analyze by X-ray diffraction, transmission X-ray microscopy, as well as Raman and Auger spectroscopy. Controlling the deposition conditions through the partial pressure of reactive N2, we achieve an ∼3× variation in thermal conductivity (∼36-104 W m-1 K-1) of ∼600 nm films, with the upper range representing one of the highest values for such film thicknesses at room temperature, especially at deposition temperatures below 100 °C. Defect densities are also estimated from the thermal conductivity measurements, providing insight into the thermal engineering of AlN that can be optimized for application-specific heat spreading or thermal confinement.

2.
Nano Lett ; 22(20): 8052-8059, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36198070

RESUMO

Strain engineering is an important method for tuning the properties of semiconductors and has been used to improve the mobility of silicon transistors for several decades. Recently, theoretical studies have predicted that strain can also improve the mobility of two-dimensional (2D) semiconductors, e.g., by reducing intervalley scattering or lowering effective masses. Here, we experimentally show strain-enhanced electron mobility in monolayer MoS2 transistors with uniaxial tensile strain, on flexible substrates. The on-state current and mobility are nearly doubled with tensile strain up to 0.7%, and devices return to their initial state after release of the strain. We also show a gate-voltage-dependent gauge factor up to 200 for monolayer MoS2, which is higher than previous values reported for sub-1 nm thin piezoresistive films. These results demonstrate the importance of strain engineering 2D semiconductors for performance enhancements in integrated circuits, or for applications such as flexible strain sensors.


Assuntos
Dissulfetos , Molibdênio , Molibdênio/química , Dissulfetos/química , Silício/química , Semicondutores
3.
Sci Adv ; 8(13): eabk1514, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353574

RESUMO

Resistive random access memory (RRAM) is an important candidate for both digital, high-density data storage and for analog, neuromorphic computing. RRAM operation relies on the formation and rupture of nanoscale conductive filaments that carry enormous current densities and whose behavior lies at the heart of this technology. Here, we directly measure the temperature of these filaments in realistic RRAM with nanoscale resolution using scanning thermal microscopy. We use both conventional metal and ultrathin graphene electrodes, which enable the most thermally intimate measurement to date. Filaments can reach 1300°C during steady-state operation, but electrode temperatures seldom exceed 350°C because of thermal interface resistance. These results reveal the importance of thermal engineering for nanoscale RRAM toward ultradense data storage or neuromorphic operation.

4.
Nat Commun ; 12(1): 7034, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887383

RESUMO

Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact-TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoOx capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g-1 for flexible TMD (WSe2) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g-1, creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics.

5.
ACS Nano ; 15(5): 8484-8491, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33944559

RESUMO

High-density memory arrays require selector devices, which enable selection of a specific memory cell within a memory array by suppressing leakage current through unselected cells. Such selector devices must have highly nonlinear current-voltage characteristics and excellent endurance; thus selectors based on a tunneling mechanism present advantages over those based on the physical motion of atoms or ions. Here, we use two-dimensional (2D) materials to build an ultrathin (three-monolayer-thick) tunneling-based memory selector. Using a sandwich of h-BN, MoS2, and h-BN monolayers leads to an "H-shaped" energy barrier in the middle of the heterojunction, which nonlinearly modulates the tunneling current when the external voltage is varied. We experimentally demonstrate that tuning the MoS2 Fermi level can improve the device nonlinearity from 10 to 25. These results provide a fundamental understanding of the tunneling process through atomically thin 2D heterojunctions and lay the foundation for developing high endurance selectors with 2D heterojunctions, potentially enabling high-density non-volatile memory systems.

7.
ACS Nano ; 14(11): 14798-14808, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32905703

RESUMO

Metal contacts are a key limiter to the electronic performance of two-dimensional (2D) semiconductor devices. Here, we present a comprehensive study of contact interfaces between seven metals (Y, Sc, Ag, Al, Ti, Au, Ni, with work functions from 3.1 to 5.2 eV) and monolayer MoS2 grown by chemical vapor deposition. We evaporate thin metal films onto MoS2 and study the interfaces by Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, and electrical characterization. We uncover that (1) ultrathin oxidized Al dopes MoS2 n-type (>2 × 1012 cm-2) without degrading its mobility, (2) Ag, Au, and Ni deposition causes varying levels of damage to MoS2 (e.g. broadening Raman E' peak from <3 to >6 cm-1), and (3) Ti, Sc, and Y react with MoS2. Reactive metals must be avoided in contacts to monolayer MoS2, but control studies reveal the reaction is mostly limited to the top layer of multilayer films. Finally, we find that (4) thin metals do not significantly strain MoS2, as confirmed by X-ray diffraction. These are important findings for metal contacts to MoS2 and broadly applicable to many other 2D semiconductors.

8.
ACS Appl Mater Interfaces ; 12(8): 9656-9663, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31999091

RESUMO

Heterostructures comprising silicon, molybdenum disulfide (MoS2), and graphene are investigated with respect to the vertical current conduction mechanism. The measured current-voltage (I-V) characteristics exhibit temperature-dependent asymmetric current, indicating thermally activated charge carrier transport. The data are compared and fitted to a current transport model that confirms thermionic emission as the responsible transport mechanism across devices. Theoretical calculations in combination with the experimental data suggest that the heterojunction barrier from Si to MoS2 is linearly temperature-dependent for T = 200-300 K with a positive temperature coefficient. The temperature dependence may be attributed to a change in band gap difference between Si and MoS2, strain at the Si/MoS2 interface, or different electron effective masses in Si and MoS2, leading to a possible entropy change stemming from variation in density of states as electrons move from Si to MoS2. The low barrier formed between Si and MoS2 and the resultant thermionic emission demonstrated here make the present devices potential candidates as the emitter diode of graphene base hot electron transistors for future high-speed electronics.

9.
Sci Adv ; 5(8): eaax1325, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31453337

RESUMO

Heterogeneous integration of nanomaterials has enabled advanced electronics and photonics applications. However, similar progress has been challenging for thermal applications, in part due to shorter wavelengths of heat carriers (phonons) compared to electrons and photons. Here, we demonstrate unusually high thermal isolation across ultrathin heterostructures, achieved by layering atomically thin two-dimensional (2D) materials. We realize artificial stacks of monolayer graphene, MoS2, and WSe2 with thermal resistance greater than 100 times thicker SiO2 and effective thermal conductivity lower than air at room temperature. Using Raman thermometry, we simultaneously identify the thermal resistance between any 2D monolayers in the stack. Ultrahigh thermal isolation is achieved through the mismatch in mass density and phonon density of states between the 2D layers. These thermal metamaterials are an example in the emerging field of phononics and could find applications where ultrathin thermal insulation is desired, in thermal energy harvesting, or for routing heat in ultracompact geometries.

10.
ACS Appl Mater Interfaces ; 9(18): 15830-15840, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425287

RESUMO

Heterostructures consisting of two-dimensional (2D) materials and conventional semiconductors have attracted a lot of attention due to their application in novel device concepts. In this work, we investigated the lateral transport characteristics of graphene/germanium heterostructures and compared them with the transport properties of graphene on SiO2. The heterostructures were fabricated by transferring a single layer of graphene (Gr) onto a lightly doped germanium (Ge) (100) substrate. The field-effect measurements revealed a shift in the Dirac voltage of Gr on the Ge substrates compared to that of the Gr on SiO2. Transfer length model measurements show a significant difference in the sheet resistance of Gr on Ge compared to that of the Gr on SiO2. The results from the electrical and structural characterization suggest that a charge transfer in the order of 1012 cm-2 occurs between Gr and Ge resulting in a doping effect in the graphene sheet. A compact electrostatic model extracted the key electronic properties of the Gr/Ge interface. This study provides valuable insights into the electronic properties of Gr on Ge, which are vital to the development of novel devices based on mixed 2D and 3D structures.

11.
ACS Nano ; 10(11): 9879-9886, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27797484

RESUMO

Graphene membranes act as highly sensitive transducers in nanoelectromechanical devices due to their ultimate thinness. Previously, the piezoresistive effect has been experimentally verified in graphene using uniaxial strain in graphene. Here, we report experimental and theoretical data on the uni- and biaxial piezoresistive properties of suspended graphene membranes applied to piezoresistive pressure sensors. A detailed model that utilizes a linearized Boltzman transport equation describes accurately the charge-carrier density and mobility in strained graphene and, hence, the gauge factor. The gauge factor is found to be practically independent of the doping concentration and crystallographic orientation of the graphene films. These investigations provide deeper insight into the piezoresistive behavior of graphene membranes.

12.
Nanoscale ; 7(45): 19099-109, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26523705

RESUMO

We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further investigate the sensitivity of the graphene devices towards water vapor. The interaction between the electrostatic dipole moment of the water and the impurity bands in the SiO2 substrate leads to electrostatic doping of the graphene layer. The proposed graphene sensor provides rapid response direct electrical readout and is compatible with back end of the line (BEOL) integration on top of CMOS-based integrated circuits.

13.
ACS Nano ; 9(5): 4776-85, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25853630

RESUMO

Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations. Regardless of the transfer method and associated cleaning scheme, time-of-flight secondary ion mass spectrometry and total reflection X-ray fluorescence measurements indicate that the graphene sheets are contaminated with residual metals (copper, iron) with a concentration exceeding 10(13) atoms/cm(2). These metal impurities appear to be partially mobile upon thermal treatment, as shown by depth profiling and reduction of the minority charge carrier diffusion length in the silicon substrate. As residual metallic impurities can significantly alter electronic and electrochemical properties of graphene and can severely impede the process of integration with silicon microelectronics, these results reveal that further progress in synthesis, handling, and cleaning of graphene is required to advance electronic and optoelectronic applications.

14.
Adv Mater ; 25(29): 3985-92, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23728928

RESUMO

An efficient and mature inkjet printing technology is introduced for mass production of coffee-ring-free patterns of high-quality graphene at high resolution (unmarked scale bars are 100 µm). Typically, several passes of printing and a simple baking allow fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin film transistors, and micro-supercapacitors.


Assuntos
Periféricos de Computador , Grafite/química , Grafite/isolamento & purificação , Microfluídica/instrumentação , Impressão Molecular/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
15.
Nano Lett ; 13(4): 1435-9, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23488893

RESUMO

We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call graphene base transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 10(4).


Assuntos
Grafite/química , Nanoestruturas/química , Nanotecnologia , Transistores Eletrônicos , Elétrons , Desenho de Equipamento , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...