Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer Res ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843355

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is associated with a five-year overall survival rate of just 13%, and development of chemotherapy resistance is nearly universal. PDAC cells overexpress wild-type IDH1 that can enable them to overcome metabolic stress, suggesting it could represent a therapeutic target in PDAC. Here, we found that anti-IDH1 therapy enhanced the efficacy of conventional chemotherapeutics. Chemotherapy treatment induced ROS and increased TCA cycle activity in PDAC cells, along with the induction of wild-type IDH1 expression as a key resistance factor. IDH1 facilitated PDAC survival following chemotherapy treatment by supporting mitochondrial function and antioxidant defense to neutralize reactive oxygen species through the generation of alpha-ketoglutarate and NADPH, respectively. Pharmacologic inhibition of wild-type IDH1 with ivosidenib synergized with conventional chemotherapeutics in vitro and potentiated the efficacy of sub-therapeutic doses of these drugs in vivo in murine PDAC models. This promising treatment approach is translatable through available and safe oral inhibitors and provides the basis of an open and accruing clinical trial testing this combination (NCT05209074).

3.
Nat Commun ; 14(1): 3823, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380658

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Administração Cutânea , Glucose , Neoplasias Pancreáticas
4.
Mol Cancer Ther ; 21(12): 1810-1822, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36190971

RESUMO

Metabolites of tryptophan degradation are known to alter mood. Their effects have only been superficially examined in the context of pancreatic cancer. Herein, we study the role of indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme important in the conversion of tryptophan to kynurenine, in a murine model of pancreatic cancer-associated depression. Behavioral tests (open field, forced swim, tail suspension, and elevated plus maze) and biochemical assays (LC-MS metabolomics) were used to characterize a depressive-phenotype in tumor-bearing mice (relative to non-tumor-bearing mice). In addition, we determine whether pharmacologic blockade of IDO1 affects mood in tumor-bearing mice. Immunocompetent mice bearing orthotopic pancreatic tumors exhibit depressive-like behavior relative to non-tumor-bearing mice. Pancreatic tumors strongly express IDO1. Consequently, serum kynurenine levels in tumor-bearing mice are elevated relative to non-tumor-bearing mice. Tumor-bearing mice treated with epacadostat, an IDO1 inhibitor, exhibited improved mood relative to mice receiving vehicle. There was a 95% reduction in serum kynurenine levels in mice receiving epacadostat relative to mice treated with vehicle. As confirmatory evidence of on-target activity, tumors of mice treated with epacadostat exhibited a compensatory increase in IDO1 protein levels. Escitalopram, an approved antidepressant, was ineffective at improving mood in tumor-bearing mice as measured by behavioral assays and did not affect kynurenine levels. Neither epacadostat, nor escitalopram, affected overall survival relative to vehicle. Mice with pancreatic cancer exhibit depressive-like behavior. Epacadostat was effective as an antidepressant for pancreatic cancer-associated depression in mice. These data offer a rationale to consider IDO1 inhibition as a therapeutic strategy to mitigate depressive symptoms in patients with pancreatic cancer.


Assuntos
Cinurenina , Neoplasias Pancreáticas , Animais , Camundongos , Indolamina-Pirrol 2,3,-Dioxigenase , Triptofano/farmacologia , Triptofano/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
5.
J Exp Clin Cancer Res ; 41(1): 283, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153582

RESUMO

BACKGROUND: Alternative treatment strategies in melanoma beyond immunotherapy and mutation-targeted therapy are urgently needed. Wild-type isocitrate dehydrogenase 1 (wtIDH1) has recently been implicated as a metabolic dependency in cancer. The enzyme protects cancer cells under metabolic stress, including nutrient limited conditions in the tumor microenvironment. Specifically, IDH1 generates NADPH to maintain redox homeostasis and produces α-ketoglutarate to support mitochondrial function through anaplerosis. Herein, the role of wtIDH1 in melanoma is further explored. METHODS: The expression of wtIDH1 was determined by qRT-PCR, and Western blot in melanoma cell lines and the effect of wtIDH1 on metabolic reprogramming in melanoma was interrogated by LC-MS. The impact of wtIDH1 inhibition alone and in combination with chemotherapy was determined in cell culture and mouse melanoma models. RESULTS: Melanoma patients express higher levels of the wtIDH1 enzyme compared to normal skin tissue, and elevated wtIDH1 expression portends poor patient survival. Knockdown of IDH1 by RNA interference inhibited cell proliferation and migration under low nutrient levels. Suppression of IDH1 expression in melanoma also decreased NADPH and glutathione levels, resulting in increased reactive oxygen species. An FDA-approved inhibitor of mutant IDH1, ivosidenib (AG-120), exhibited potent anti-wtIDH1 properties under low magnesium and nutrient levels, reflective of the tumor microenvironment in natura. Thus, similar findings were replicated in murine models of melanoma. In light of the impact of wtIDH1 inhibition on oxidative stress, enzyme blockade was synergistic with conventional anti-melanoma chemotherapy in pre-clinical models. CONCLUSIONS: These results demonstrate the clinical potential of wtIDH1 inhibition as a novel and readily available combination treatment strategy for patients with advanced and refractory melanoma. Schematic shows increased wild-type IDH1 expression and activity as an adaptive response to metabolic stress induced by chemotherapy.


Assuntos
Glioma , Melanoma , Animais , Glioma/genética , Glutationa , Isocitrato Desidrogenase/genética , Ácidos Cetoglutáricos , Magnésio , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Mutação , NADP/genética , NADP/metabolismo , Espécies Reativas de Oxigênio , Microambiente Tumoral
6.
Nat Cancer ; 3(7): 852-865, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35681100

RESUMO

Nutrient-deprived conditions in the tumor microenvironment (TME) restrain cancer cell viability due to increased free radicals and reduced energy production. In pancreatic cancer cells a cytosolic metabolic enzyme, wild-type isocitrate dehydrogenase 1 (wtIDH1), enables adaptation to these conditions. Under nutrient starvation, wtIDH1 oxidizes isocitrate to generate α-ketoglutarate (αKG) for anaplerosis and NADPH to support antioxidant defense. In this study, we show that allosteric inhibitors of mutant IDH1 (mIDH1) are potent wtIDH1 inhibitors under conditions present in the TME. We demonstrate that low magnesium levels facilitate allosteric inhibition of wtIDH1, which is lethal to cancer cells when nutrients are limited. Furthermore, the Food & Drug Administration (FDA)-approved mIDH1 inhibitor ivosidenib (AG-120) dramatically inhibited tumor growth in preclinical models of pancreatic cancer, highlighting this approach as a potential therapeutic strategy against wild-type IDH1 cancers.


Assuntos
Isocitrato Desidrogenase , Neoplasias Pancreáticas , Regulação Alostérica , Inibidores Enzimáticos/farmacologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Nutrientes , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Psychooncology ; 31(8): 1390-1398, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470512

RESUMO

OBJECTIVE: To determine the frequency of depression or anxiety preceding a diagnosis of pancreatic cancer (PC). Further, to examine the association of PC-associated depression or anxiety with treatment compliance and survival. METHODS: 856 patients with PC from a single institution were identified using International Classification of Diseases (ICD) codes. For each case, two non-cancer age- and sex-matched controls were included. Dates of depression or anxiety diagnosis identified using ICD codes were compared to the date of PC diagnosis. The medical record was queried to further explore psychiatric symptoms. Multivariable analyses were performed to examine if prediagnosis depression or anxiety was associated with receipt of treatment or survival. RESULTS: A greater proportion of patients with PC experienced depression or anxiety in the year preceding diagnosis than the overall frequency in controls (4.6% vs. 2.6%, p = 0.005) based on ICD codes. Patients with PC exhibited signs of prodromal depression or anxiety based on ICD codes, clinical documentation of psychiatric symptoms, or initiation of new psychiatric medications more often than controls (20.7% vs. 6.7%, p < 0.001). Prediagnosis depression or anxiety was associated with a reduced likelihood of receiving chemotherapy (OR = 0.58, p = 0.04). There was an associated decrease in overall survival among patients with metastatic disease who experienced depression or anxiety before PC diagnosis (HR = 1.32, p = 0.04). CONCLUSIONS: The frequency of depression or anxiety among patients with PC was higher than the general population. Prediagnosis psychiatric symptoms were associated with reduced chemotherapy utilization and worse overall survival. Thus, timely identification and treatment of these symptoms may improve outcomes.


Assuntos
Depressão , Neoplasias Pancreáticas , Ansiedade/epidemiologia , Ansiedade/psicologia , Transtornos de Ansiedade/epidemiologia , Depressão/epidemiologia , Depressão/psicologia , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Cooperação do Paciente , Neoplasias Pancreáticas
8.
Mol Cancer Res ; 20(6): 996-1008, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35276002

RESUMO

We previously identified that human epidermal growth factor receptor 3 (HER3, also known as ERBB3) is a key mediator in liver endothelial cell (EC) promoting colorectal cancer growth and chemoresistance, and suggested HER3-targeted therapy as a strategy for treating patients with metastatic colorectal cancer in the liver. Meanwhile, KRAS mutations occur in 40%-50% of metastatic colorectal cancer and render colorectal cancer resistant to therapies targeting the other HER family protein epidermal growth factor receptor (EGFR). It is necessary to elucidate the roles of KRAS mutation status in HER3-mediated cell survival and colorectal cancer response to HER3 inhibition. In the present study, we used primary ECs isolated from non-neoplastic liver tissues to recapitulate the liver EC microenvironment. We demonstrated that liver EC-secreted factors activated colorectal cancer-associated HER3, and increased colorectal cancer cell survival in vitro and promoted colorectal cancer patient-derived xenograft tumor growth in vivo. Moreover, we determined that blocking HER3, either by siRNA knockdown or the humanized antibody seribantumab, blocked EC-induced colorectal cancer survival in vitro in both KRAS wild-type and mutant colorectal cancer cells, and the HER3 antibody seribantumab significantly decreased colorectal cancer tumor growth and sensitized tumors to chemotherapy in an orthotopic xenograft model with colorectal cancer tumors developed in the liver. In summary, our findings demonstrated that blocking HER3 had significant effects on attenuating liver EC-induced colorectal cancer cell survival independent of the KRAS mutation status. IMPLICATIONS: This body of work highlighted a potential strategy of using HER3 antibodies in combination with standard chemotherapy agents for treating patients with either KRAS wild-type or KRAS mutant metastatic colorectal cancer.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Animais , Sobrevivência Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Endotélio/metabolismo , Endotélio/patologia , Receptores ErbB/genética , Humanos , Fígado/patologia , Camundongos , Camundongos Nus , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral
9.
Cancer Treat Rev ; 103: 102334, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34974243

RESUMO

Isocitrate dehydrogenase 1 (IDH1) has been investigated as a promising therapeutic target in select cancers with a mutated version of the enzyme (mtIDH1). With only one phase III trial published to date and two indications approved for routine clinical use by the FDA, we reviewed the entire clinical trial portfolio to broadly understand mtIDH1 inhibitor activity in patients. We queried PubMed.gov and ClinicalTrials.gov to identify published and ongoing clinical trials related to IDH1 and cancer. Progression-free survival (PFS), overall survival (OS), 2-hydroxyglutarate levels, and adverse events were summarized. To date, ten clinical trials investigating mtIDH1 inhibitors among patients with diverse malignancies (cholangiocarcinoma, acute myeloid leukemia, chondrosarcoma, glioma) have been published. Almost every trial (80%) has investigated ivosidenib. In multiple phase I trials, ivosidenib treatment resulted in promising radiographic and biochemical responses with improved survival outcomes (relative to historic data) among patients with both solid and hematologic mtIDH1 malignancies. Among patients enrolled in a phase III trial with advanced cholangiocarcinoma, ivosidenib resulted in a PFS rate of 32% at 6 months, as compared to 0% with placebo. There was a 5.2 month increase in OS with ivosidenib relative to placebo, after considering crossover. The treatment-specific grade ≥3 adverse event rate of ivosidenib was 2%-26% among all patients, and was just 3.6% among 284 patients who had a solid tumor across four trials. Although <1% of malignancies harbor IDH1 mutations, small molecule mtIDH1 inhibitors, namely ivosidenib, appear to be biologically active and well tolerated in patients with solid and hematologic mtIDH1 malignancies.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Glicina/análogos & derivados , Isocitrato Desidrogenase/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Piridinas/uso terapêutico , Compostos de Anilina/efeitos adversos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Benzimidazóis/efeitos adversos , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Ensaios Clínicos como Assunto , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacologia , Glicina/efeitos adversos , Glicina/farmacologia , Glicina/uso terapêutico , Humanos , Isocitrato Desidrogenase/genética , Mutação , Neoplasias/mortalidade , Piridinas/efeitos adversos , Piridinas/farmacologia
10.
J Cancer Sci Clin Ther ; 6(4): 431-445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644317

RESUMO

~90% metastatic pancreatic ductal adenocarcinoma (mPDAC) occurs in the liver, and the 5-year survival rate for patients with mPDAC is only at 3%. The liver has a unique endothelial cell (EC)-rich microenvironment, and preclinical studies showed that ECs promote cancer cell survival pathways by secreting soluble factors in a paracrine fashion in other types of cancer. However, the effects of liver ECs on mPDAC have not been elucidated. In this study, we used primary liver ECs and determined that liver EC-secreted factors containing conditioned medium (CM) increased PDAC cell growth, compared to control CM from PDAC cells. Using an unbiased receptor tyrosine kinase array, we identified human epidermal growth factor receptor 3 (HER3, also known as ErbB3) as a key mediator of liver EC-induced growth in PDAC cells with HER3 expression (HER3 +ve). We found that EC-secreted neuregulins activated the HER3-AKT signaling axis, and that depleting neuregulins from EC CM or blocking HER3 with an antibody, seribantumab, attenuated EC-induced functions in HER3 +ve PDAC cells, but not in cells without HER3 expression. Furthermore, we determined that EC CM increased PDAC xenograft growth in vivo, and that seribantumab blocked EC-induced growth in xenografts with HER3 expression. These findings elucidated a paracrine role of liver ECs in promoting PDAC cell growth, and identified the HER3-AKT axis as a key mediator in EC-induced functions in HER3 +ve PDAC cells. As over 70% mPDAC express HER3, this study highlights the potential of using HER3-targeted therapies for treating patients with HER3 +ve mPDAC.

11.
Cancer Res Commun ; 1(2): 65-78, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35582016

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor prognosis and chemotherapy with gemcitabine has limited effects and is associated with development of drug resistance. Treatment of Panc1 and MiaPaca2 pancreatic cancer cells with gemcitabine induced expression of the orphan nuclear receptor 4A2 (NURR1) and analysis of the cancer genome atlas indicated the NURR1 is overexpressed in pancreatic tumors and is a negative prognostic factor for patient survival. Results of NURR1 knockdown or treatment with the NURR1 antagonist 1,1-bis(3΄-indolyl)-1-(p-chlorophenyl)methane (C-DIM 12) demonstrated that NURR1 was pro-oncogenic in pancreatic cancer cells and regulated cancer cell and tumor growth and survival. NURR1 is induced by gemcitabine and serves as a key drug-resistance factor and is also required for gemcitabine-induced cytoprotective autophagy. NURR1 regulated genes were determined by RNA sequencing of mRNAs expressed in MiaPaCa2 cells expressing NURR1 and in CRISPR/Cas9 gene edited cells for NURR1 knockdown and KEGG enrichment analysis of the differentially expressed genes showed that autophagy was the major pathway regulated by NURR1. Moreover, NURR1 regulated expression of two major autophagic genes ATG7 and ATG12 which are also overexpressed in pancreatic tumors and like NURR1 are negative prognostic factors for patient survival. Thus, gemcitabine-induced cytoprotective autophagy is due to the NURR1 - ATG7/ATG12 axis and this can be targeted and disrupted by NURR1 antagonist C-DIM12 demonstrating the potential clinical applications for combination therapies with gemcitabine and NURR1 antagonists.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/tratamento farmacológico , Gencitabina , Carcinoma Ductal Pancreático/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares , Autofagia/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Neoplasias Pancreáticas
12.
Mol Cancer Res ; 17(2): 508-520, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30266754

RESUMO

Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic enzyme in human malignancy. A heterozygous genetic alteration, arginine 132, promotes the conversion of α-ketoglutarate to D-2-hydroxyglutarate (2-HG). Although pharmacologic inhibitors of mutant IDH1 are promising, resistance mechanisms to targeted therapy are not understood. Additionally, the role of wild-type IDH1 (WT.IDH1) in cancer requires further study. Recently, it was observed that the regulatory RNA-binding protein, HuR (ELAVL1), protects nutrient-deprived cancer cells without IDH1 mutations, by stabilizing WT.IDH1 transcripts. In the present study, a similar regulatory effect on both mutant (Mut.IDH1) and WT.IDH1 transcripts in heterozygous IDH1-mutant tumors is observed. In ribonucleoprotein immunoprecipitation assays of IDH1-mutant cell lines, wild-type and mutant IDH1 mRNAs each bound to HuR. Both isoforms were profoundly downregulated at the mRNA and protein levels after genetic suppression of HuR (siRNAs or CRISPR deletion) in HT1080 (R132C IDH1 mutation) and BT054 cells (R132H). Proliferation and invasion were adversely affected after HuR suppression and metabolomic studies revealed a reduction in Pentose Phosphate Pathway metabolites, nucleotide precursors, and 2-HG levels. HuR-deficient cells were especially sensitive to stress, including low glucose conditions or a mutant IDH1 inhibitor (AGI-5198). IDH1-mutant cancer cells were rescued by WT.IDH1 overexpression to a greater extent than Mut.IDH1 overexpression under these conditions. This study reveals the importance of HuR's regulation of both mutant and wild-type IDH1 in tumors harboring a heterozygous IDH1 mutation with implications for therapy. IMPLICATIONS: This study highlights the HuR-IDH1 (mutant and wild-type IDH1) regulatory axis as a critical, actionable therapeutic target in IDH1-mutated cancer, and incomplete blockade of the entire HuR-IDH1 survival axis would likely diminish the efficacy of drugs that selectively target only the mutant isoenzyme.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Isocitrato Desidrogenase/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/genética , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Fibrossarcoma/patologia , Xenoenxertos , Humanos , Isocitrato Desidrogenase/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Nus , Mutação
13.
Front Oncol ; 8: 672, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30805300

RESUMO

[This corrects the article DOI: 10.3389/fonc.2018.00617.].

14.
Front Oncol ; 8: 617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30631752

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a highly lethal cancer with a long-term survival rate under 10%. Available cytotoxic chemotherapies have significant side effects, and only marginal therapeutic efficacy. FDA approved drugs currently used against PDA target DNA metabolism and DNA integrity. However, alternative metabolic targets beyond DNA may prove to be much more effective. PDA cells are forced to live within a particularly severe microenvironment characterized by relative hypovascularity, hypoxia, and nutrient deprivation. Thus, PDA cells must possess biochemical flexibility in order to adapt to austere conditions. A better understanding of the metabolic dependencies required by PDA to survive and thrive within a harsh metabolic milieu could reveal specific metabolic vulnerabilities. These molecular requirements can then be targeted therapeutically, and would likely be associated with a clinically significant therapeutic window since the normal tissue is so well-perfused with an abundant nutrient supply. Recent work has uncovered a number of promising therapeutic targets in the metabolic domain, and clinicians are already translating some of these discoveries to the clinic. In this review, we highlight mitochondria metabolism, non-canonical nutrient acquisition pathways (macropinocytosis and use of pancreatic stellate cell-derived alanine), and redox homeostasis as compelling therapeutic opportunities in the metabolic domain.

15.
Cancer Res ; 77(16): 4460-4471, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28652247

RESUMO

Cancer aggressiveness may result from the selective pressure of a harsh nutrient-deprived microenvironment. Here we illustrate how such conditions promote chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC). Glucose or glutamine withdrawal resulted in a 5- to 10-fold protective effect with chemotherapy treatment. PDAC xenografts were less sensitive to gemcitabine in hypoglycemic mice compared with hyperglycemic mice. Consistent with this observation, patients receiving adjuvant gemcitabine (n = 107) with elevated serum glucose levels (HgbA1C > 6.5%) exhibited improved survival. We identified enhanced antioxidant defense as a driver of chemoresistance in this setting. ROS levels were doubled in vitro by either nutrient withdrawal or gemcitabine treatment, but depriving PDAC cells of nutrients before gemcitabine treatment attenuated this effect. Mechanistic investigations based on RNAi or CRISPR approaches implicated the RNA binding protein HuR in preserving survival under nutrient withdrawal, with or without gemcitabine. Notably, RNA deep sequencing and functional analyses in HuR-deficient PDAC cell lines identified isocitrate dehydrogenase 1 (IDH1) as the sole antioxidant enzyme under HuR regulation. HuR-deficient PDAC cells lacked the ability to engraft successfully in immunocompromised mice, but IDH1 overexpression in these cells was sufficient to fully restore chemoresistance under low nutrient conditions. Overall, our findings highlight the HuR-IDH1 regulatory axis as a critical, actionable therapeutic target in pancreatic cancer. Cancer Res; 77(16); 4460-71. ©2017 AACR.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Isocitrato Desidrogenase/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Estudos de Coortes , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteína Semelhante a ELAV 1/genética , Humanos , Isocitrato Desidrogenase/genética , Camundongos , Camundongos Nus , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Processamento de Proteína Pós-Traducional , Análise de Sobrevida , Ativação Transcricional , Transfecção , Regulação para Cima , Gencitabina
16.
Mol Cancer Res ; 15(4): 489-497, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28096479

RESUMO

Tamoxifen is a common adjuvant treatment for estrogen receptor (ER)α-positive patients with breast cancer; however, acquired resistance abrogates the efficacy of this therapeutic approach. We recently demonstrated that G protein-coupled estrogen receptor 1 (GPER1) mediates tamoxifen action in breast cancer cells by inducing insulin-like growth factor-binding protein-1 (IGFBP-1) to inhibit IGF-1-dependent signaling. To determine whether dysregulation of IGFBP-1 induction is associated with tamoxifen resistance, IGFBP-1 transcription was measured in tamoxifen-resistant MCF-7 cells (TamR) after tamoxifen (Tam) treatment. IGFBP-1 transcription was not stimulated in tamoxifen-treated TamR cells whereas decreased expression of FoxO1, a known modulator of IGFBP-1, was observed. Exogenous expression of FoxO1 rescued the ability of tamoxifen to induce IGFBP-1 transcription in TamR cells. As decreased IGF-1R expression is observed in tamoxifen-resistant cells, the requirement for IGF-1R expression on tamoxifen-stimulated IGFBP-1 transcription was investigated. In TamR and SK-BR-3 cells, both characterized by low IGF-1R levels, exogenous IGF-1R expression increased FoxO1 levels and IGFBP-1 expression, whereas IGF-1R knockdown in MCF-7 cells decreased tamoxifen-stimulated IGFBP-1 transcription. Interestingly, both 17ß-estradiol (E2)-stimulated ERα phosphorylation and progesterone receptor (PR) expression were altered in TamR. PR is a transcription factor known to modulate FoxO1 transcription. In addition, IGF-1R knockdown decreased FoxO1 protein levels in MCF-7 cells. Furthermore, IGF-1R or FoxO1 knockdown inhibited the ability of tamoxifen to induce IGFBP-1 transcription and tamoxifen sensitivity in MCF-7 cells. These data provide a molecular mechanistic connection between IGF-1R expression and the FoxO1-mediated mechanism of tamoxifen action in breast cancer cells.Implications: Loss of IGF-1R expression is associated with decreased tamoxifen efficacy in patients with breast cancer and the development of tamoxifen resistance. This contribution identifies potential molecular mechanisms of altered tamoxifen sensitivity in breast cancer cells resulting from decreased IGF-1R expression. Mol Cancer Res; 15(4); 489-97. ©2017 AACR.


Assuntos
Neoplasias da Mama/genética , Proteína Forkhead Box O1/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Receptores de Somatomedina/genética , Tamoxifeno/farmacologia , Neoplasias da Mama/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo
17.
Mol Cell Endocrinol ; 422: 160-171, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26690777

RESUMO

Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Hidroxitestosteronas/farmacologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/farmacologia , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Tamoxifeno/farmacologia , Neoplasias da Mama/tratamento farmacológico , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Feminino , Humanos , Células MCF-7 , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...