Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38529495

RESUMO

Extrastriatal visual cortex is known to exhibit distinct response profiles to complex stimuli of varying ecological importance (e.g., faces, scenes, and tools). The dominant interpretation of these effects is that they reflect activation of distinct "category-selective" brain regions specialized to represent these and other stimulus categories. We sought to explore an alternative perspective: that the response to these stimuli is determined less by whether they form distinct categories, and more by their relevance to different forms of natural behavior. In this regard, food is an interesting test case, since it is primarily distinguished from other objects by its edibility, not its appearance, and there is evidence of food-selectivity in human visual cortex. Food is also associated with a common behavior, eating, and food consumption typically also involves the manipulation of food, often with the hands. In this context, food items share many properties in common with tools: they are graspable objects that we manipulate in self-directed and stereotyped forms of action. Thus, food items may be preferentially represented in extrastriatal visual cortex in part because of these shared affordance properties, rather than because they reflect a wholly distinct kind of category. We conducted fMRI and behavioral experiments to test this hypothesis. We found that behaviorally graspable food items and tools were judged to be similar in their action-related properties, and that the location, magnitude, and patterns of neural responses for images of graspable food items were similar in profile to the responses for tool stimuli. Our findings suggest that food-selectivity may reflect the behavioral affordances of food items rather than a distinct form of category-selectivity.

2.
Cortex ; 167: 235-246, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579642

RESUMO

Performing a secondary task while driving causes a decline in driving performance. This phenomenon, called dual-task interference, can have lethal consequences. Previous fMRI studies have looked at the changes in the average brain activity to uncover the neural correlates of dual-task interference. From these results, it is unclear whether the overall modulations in brain activity result from general effects such as task difficulty, attentional modulations, and mental effort or whether it is caused by a change in the responses specific to each condition due to dual-task interference. To overcome this limitation, here, we used multi-voxel pattern analysis (MVPA) to interrogate the change in the information content in multiple brain regions during dual-task interference in simulated driving. Participants performed a lane-change task in a simulated driving environment, along with a tone discrimination task with either short or long onset time difference (Stimulus Onset Asynchrony, SOA) between the two tasks. Behavioral results indicated a robust dual-task effect on lane-change reaction time (RT). MVPA revealed regions that carry information about the driving lane-change direction (shift right/shift left), including the superior parietal lobe (SPL), visual, and motor regions. Comparison of decoding accuracies across SOA conditions in the SPL region revealed lower accuracy in the short compared to the long SOA condition. This change in accuracy was not observed in the visual and motor regions. These findings suggest that the dual-task interference in driving may be related to the disturbance of information processing in the SPL region.

3.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333078

RESUMO

Visual stimuli compete with each other for cortical processing and attention biases this competition in favor of the attended stimulus. How does the relationship between the stimuli affect the strength of this attentional bias? Here, we used functional MRI to explore the effect of target-distractor similarity in neural representation on attentional modulation in the human visual cortex using univariate and multivariate pattern analyses. Using stimuli from four object categories (human bodies, cats, cars and houses), we investigated attentional effects in the primary visual area V1, the object-selective regions LO and pFs, the body-selective region EBA, and the scene-selective region PPA. We demonstrated that the strength of the attentional bias towards the target is not fixed but decreases with increasing distractor-target similarity. Simulations provided evidence that this result pattern is explained by tuning sharpening rather than an increase in gain. Our findings provide a mechanistic explanation for behavioral effects of target-distractor similarity on attentional biases and suggest tuning sharpening as the underlying mechanism in object-based attention.

4.
Elife ; 122023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163571

RESUMO

Divisive normalization of the neural responses by the activity of the neighboring neurons has been proposed as a fundamental operation in the nervous system based on its success in predicting neural responses recorded in primate electrophysiology studies. Nevertheless, experimental evidence for the existence of this operation in the human brain is still scant. Here, using functional MRI, we examined the role of normalization across the visual hierarchy in the human visual cortex. Using stimuli form the two categories of human bodies and houses, we presented objects in isolation or in clutter and asked participants to attend or ignore the stimuli. Focusing on the primary visual area V1, the object-selective regions LO and pFs, the body-selective region EBA, and the scene-selective region PPA, we first modeled single-voxel responses using a weighted sum, a weighted average, and a normalization model and demonstrated that although the weighted sum and weighted average models also made acceptable predictions in some conditions, the response to multiple stimuli could generally be better described by a model that takes normalization into account. We then determined the observed effects of attention on cortical responses and demonstrated that these effects were predicted by the normalization model, but not by the weighted sum or the weighted average models. Our results thus provide evidence that the normalization model can predict responses to objects across shifts of visual attention, suggesting the role of normalization as a fundamental operation in the human brain.


Assuntos
Córtex Visual , Humanos , Encéfalo , Cabeça , Neurônios/fisiologia , Estimulação Luminosa , Córtex Visual Primário , Córtex Visual/fisiologia , Percepção Visual/fisiologia
5.
Elife ; 122023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847339

RESUMO

Understanding object representations requires a broad, comprehensive sampling of the objects in our visual world with dense measurements of brain activity and behavior. Here, we present THINGS-data, a multimodal collection of large-scale neuroimaging and behavioral datasets in humans, comprising densely sampled functional MRI and magnetoencephalographic recordings, as well as 4.70 million similarity judgments in response to thousands of photographic images for up to 1,854 object concepts. THINGS-data is unique in its breadth of richly annotated objects, allowing for testing countless hypotheses at scale while assessing the reproducibility of previous findings. Beyond the unique insights promised by each individual dataset, the multimodality of THINGS-data allows combining datasets for a much broader view into object processing than previously possible. Our analyses demonstrate the high quality of the datasets and provide five examples of hypothesis-driven and data-driven applications. THINGS-data constitutes the core public release of the THINGS initiative (https://things-initiative.org) for bridging the gap between disciplines and the advancement of cognitive neuroscience.


Assuntos
Encéfalo , Reconhecimento Visual de Modelos , Humanos , Reprodutibilidade dos Testes , Reconhecimento Visual de Modelos/fisiologia , Encéfalo/diagnóstico por imagem , Magnetoencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
6.
J Neurosci ; 43(4): 621-634, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36639892

RESUMO

Humans can label and categorize objects in a visual scene with high accuracy and speed, a capacity well characterized with studies using static images. However, motion is another cue that could be used by the visual system to classify objects. To determine how motion-defined object category information is processed by the brain in the absence of luminance-defined form information, we created a novel stimulus set of "object kinematograms" to isolate motion-defined signals from other sources of visual information. Object kinematograms were generated by extracting motion information from videos of 6 object categories and applying the motion to limited-lifetime random dot patterns. Using functional magnetic resonance imaging (fMRI) (n = 15, 40% women), we investigated whether category information from the object kinematograms could be decoded within the occipitotemporal and parietal cortex and evaluated whether the information overlapped with category responses to static images from the original videos. We decoded object category for both stimulus formats in all higher-order regions of interest (ROIs). More posterior occipitotemporal and ventral regions showed higher accuracy in the static condition, while more anterior occipitotemporal and dorsal regions showed higher accuracy in the dynamic condition. Further, decoding across the two stimulus formats was possible in all regions. These results demonstrate that motion cues can elicit widespread and robust category responses on par with those elicited by static luminance cues, even in ventral regions of visual cortex that have traditionally been associated with primarily image-defined form processing.SIGNIFICANCE STATEMENT Much research on visual object recognition has focused on recognizing objects in static images. However, motion is a rich source of information that humans might also use to categorize objects. Here, we present the first study to compare neural representations of several animate and inanimate objects when category information is presented in two formats: static cues or isolated dynamic motion cues. Our study shows that, while higher-order brain regions differentially process object categories depending on format, they also contain robust, abstract category representations that generalize across format. These results expand our previous understanding of motion-derived animate and inanimate object category processing and provide useful tools for future research on object category processing driven by multiple sources of visual information.


Assuntos
Reconhecimento Visual de Modelos , Córtex Visual , Humanos , Feminino , Masculino , Reconhecimento Visual de Modelos/fisiologia , Percepção Visual/fisiologia , Encéfalo/fisiologia , Córtex Visual/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Estimulação Luminosa
7.
Cereb Cortex ; 33(4): 1462-1475, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35511702

RESUMO

Humans can recognize others' actions in the social environment. This action recognition ability is rarely hindered by the movement of people in the environment. The neural basis of this position tolerance for observed actions is not fully understood. Here, we aimed to identify brain regions capable of generalizing representations of actions across different positions and investigate the representational content of these regions. In a functional magnetic resonance imaging experiment, participants viewed point-light displays of different human actions. Stimuli were presented in either the upper or the lower visual field. Multivariate pattern analysis and a surface-based searchlight approach were employed to identify brain regions that contain position-tolerant action representation: Classifiers were trained with patterns in response to stimuli presented in one position and were tested with stimuli presented in another position. Results showed above-chance classification in the left and right lateral occipitotemporal cortices, right intraparietal sulcus, and right postcentral gyrus. Further analyses exploring the representational content of these regions showed that responses in the lateral occipitotemporal regions were more related to subjective judgments, while those in the parietal regions were more related to objective measures. These results provide evidence for two networks that contain abstract representations of human actions with distinct representational content.


Assuntos
Mapeamento Encefálico , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Lobo Parietal/fisiologia , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos
8.
Neuroimage ; 263: 119635, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116617

RESUMO

Forming transformation-tolerant object representations is critical to high-level primate vision. Despite its significance, many details of tolerance in the human brain remain unknown. Likewise, despite the ability of convolutional neural networks (CNNs) to exhibit human-like object categorization performance, whether CNNs form tolerance similar to that of the human brain is unknown. Here we provide the first comprehensive documentation and comparison of three tolerance measures in the human brain and CNNs. We measured fMRI responses from human ventral visual areas to real-world objects across both Euclidean and non-Euclidean feature changes. In single fMRI voxels in higher visual areas, we observed robust object response rank-order preservation across feature changes. This is indicative of functional smoothness in tolerance at the fMRI meso-scale level that has never been reported before. At the voxel population level, we found highly consistent object representational structure across feature changes towards the end of ventral processing. Rank-order preservation, consistency, and a third tolerance measure, cross-decoding success (i.e., a linear classifier's ability to generalize performance across feature changes) showed an overall tight coupling. These tolerance measures were in general lower for Euclidean than non-Euclidean feature changes in lower visual areas, but increased over the course of ventral processing for all feature changes. These characteristics of tolerance, however, were absent in eight CNNs pretrained with ImageNet images with varying network architecture, depth, the presence/absence of recurrent processing, or whether a network was pretrained with the original or stylized ImageNet images that encouraged shape processing. CNNs do not appear to develop the same kind of tolerance as the human brain over the course of visual processing.


Assuntos
Redes Neurais de Computação , Reconhecimento Visual de Modelos , Animais , Humanos , Reconhecimento Visual de Modelos/fisiologia , Percepção Visual , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico
9.
J Cogn Neurosci ; 34(12): 2406-2435, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122358

RESUMO

Previous research shows that, within human occipito-temporal cortex (OTC), we can use a general linear mapping function to link visual object responses across nonidentity feature changes, including Euclidean features (e.g., position and size) and non-Euclidean features (e.g., image statistics and spatial frequency). Although the learned mapping is capable of predicting responses of objects not included in training, these predictions are better for categories included than those not included in training. These findings demonstrate a near-orthogonal representation of object identity and nonidentity features throughout human OTC. Here, we extended these findings to examine the mapping across both Euclidean and non-Euclidean feature changes in human posterior parietal cortex (PPC), including functionally defined regions in inferior and superior intraparietal sulcus. We additionally examined responses in five convolutional neural networks (CNNs) pretrained with object classification, as CNNs are considered as the current best model of the primate ventral visual system. We separately compared results from PPC and CNNs with those of OTC. We found that a linear mapping function could successfully link object responses in different states of nonidentity transformations in human PPC and CNNs for both Euclidean and non-Euclidean features. Overall, we found that object identity and nonidentity features are represented in a near-orthogonal, rather than complete-orthogonal, manner in PPC and CNNs, just like they do in OTC. Meanwhile, some differences existed among OTC, PPC, and CNNs. These results demonstrate the similarities and differences in how visual object information across an identity-preserving image transformation may be represented in OTC, PPC, and CNNs.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Lobo Parietal/fisiologia , Redes Neurais de Computação , Lobo Temporal
10.
Cogn Neuropsychol ; 39(1-2): 54-57, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35624546
11.
J Neurosci ; 41(35): 7403-7419, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34253629

RESUMO

In everyday life, we have no trouble categorizing objects varying in position, size, and orientation. Previous fMRI research shows that higher-level object processing regions in the human lateral occipital cortex may link object responses from different affine states (i.e., size and viewpoint) through a general linear mapping function capable of predicting responses to novel objects. In this study, we extended this approach to examine the mapping for both Euclidean (e.g., position and size) and non-Euclidean (e.g., image statistics and spatial frequency) transformations across the human ventral visual processing hierarchy, including areas V1, V2, V3, V4, ventral occipitotemporal cortex, and lateral occipitotemporal cortex. The predicted pattern generated from a linear mapping function could capture a significant amount of the changes associated with the transformations throughout the ventral visual stream. The derived linear mapping functions were not category independent as performance was better for the categories included than those not included in training and better between two similar versus two dissimilar categories in both lower and higher visual regions. Consistent with object representations being stronger in higher than in lower visual regions, pattern selectivity and object category representational structure were somewhat better preserved in the predicted patterns in higher than in lower visual regions. There were no notable differences between Euclidean and non-Euclidean transformations. These findings demonstrate a near-orthogonal representation of object identity and these nonidentity features throughout the human ventral visual processing pathway with these nonidentity features largely untangled from the identity features early in visual processing.SIGNIFICANCE STATEMENT Presently we still do not fully understand how object identity and nonidentity (e.g., position, size) information are simultaneously represented in the primate ventral visual system to form invariant representations. Previous work suggests that the human lateral occipital cortex may be linking different affine states of object representations through general linear mapping functions. Here, we show that across the entire human ventral processing pathway, we could link object responses in different states of nonidentity transformations through linear mapping functions for both Euclidean and non-Euclidean transformations. These mapping functions are not identity independent, suggesting that object identity and nonidentity features are represented in a near rather than a completely orthogonal manner.


Assuntos
Mapeamento Encefálico , Lobo Occipital/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adolescente , Adulto , Animais , Reconhecimento Facial/fisiologia , Feminino , Utensílios Domésticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
13.
J Vis ; 21(5): 14, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34003244

RESUMO

Adults use distributed cues in the bodies of others to predict and counter their actions. To investigate the development of this ability, we had adults and 6- to 8-year-old children play a competitive game with a confederate who reached toward one of two targets. Child and adult participants, who sat across from the confederate, attempted to beat the confederate to the target by touching it before the confederate did. Adults used cues distributed through the head, shoulders, torso, and arms to predict the reaching actions. Children, in contrast, used cues in the arms and torso, but we did not find any evidence that they could use cues in the head or shoulders to predict the actions. These results provide evidence for a change in the ability to respond rapidly to predictive cues to others' actions from childhood to adulthood. Despite humans' sensitivity to action goals even in infancy, the ability to read cues from the body for action prediction in rapid interactive settings is still developing in children as old as 6 to 8 years of age.


Assuntos
Desenvolvimento Infantil , Sinais (Psicologia) , Adolescente , Adulto , Criança , Humanos , Adulto Jovem
14.
J Neurosci ; 41(19): 4234-4252, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33789916

RESUMO

A visual object is characterized by multiple visual features, including its identity, position and size. Despite the usefulness of identity and nonidentity features in vision and their joint coding throughout the primate ventral visual processing pathway, they have so far been studied relatively independently. Here in both female and male human participants, the coding of identity and nonidentity features was examined together across the human ventral visual pathway. The nonidentity features tested included two Euclidean features (position and size) and two non-Euclidean features (image statistics and spatial frequency (SF) content of an image). Overall, identity representation increased and nonidentity feature representation decreased along the ventral visual pathway, with identity outweighing the non-Euclidean but not the Euclidean features at higher levels of visual processing. In 14 convolutional neural networks (CNNs) pretrained for object categorization with varying architecture, depth, and with/without recurrent processing, nonidentity feature representation showed an initial large increase from early to mid-stage of processing, followed by a decrease at later stages of processing, different from brain responses. Additionally, from lower to higher levels of visual processing, position became more underrepresented and image statistics and SF became more overrepresented compared with identity in CNNs than in the human brain. Similar results were obtained in a CNN trained with stylized images that emphasized shape representations. Overall, by measuring the coding strength of object identity and nonidentity features together, our approach provides a new tool for characterizing feature coding in the human brain and the correspondence between the brain and CNNs.SIGNIFICANCE STATEMENT This study examined the coding strength of object identity and four types of nonidentity features along the human ventral visual processing pathway and compared brain responses with those of 14 convolutional neural networks (CNNs) pretrained to perform object categorization. Overall, identity representation increased and nonidentity feature representation decreased along the ventral visual pathway, with some notable differences among the different nonidentity features. CNNs differed from the brain in a number of aspects in their representations of identity and nonidentity features over the course of visual processing. Our approach provides a new tool for characterizing feature coding in the human brain and the correspondence between the brain and CNNs.


Assuntos
Rede Nervosa/fisiologia , Redes Neurais de Computação , Lobo Occipital/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/diagnóstico por imagem , Reconhecimento Visual de Modelos , Estimulação Luminosa , Lobo Temporal/diagnóstico por imagem , Vias Visuais/fisiologia , Adulto Jovem
15.
Nat Commun ; 12(1): 2065, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824315

RESUMO

Convolutional neural networks (CNNs) are increasingly used to model human vision due to their high object categorization capabilities and general correspondence with human brain responses. Here we evaluate the performance of 14 different CNNs compared with human fMRI responses to natural and artificial images using representational similarity analysis. Despite the presence of some CNN-brain correspondence and CNNs' impressive ability to fully capture lower level visual representation of real-world objects, we show that CNNs do not fully capture higher level visual representations of real-world objects, nor those of artificial objects, either at lower or higher levels of visual representations. The latter is particularly critical, as the processing of both real-world and artificial visual stimuli engages the same neural circuits. We report similar results regardless of differences in CNN architecture, training, or the presence of recurrent processing. This indicates some fundamental differences exist in how the brain and CNNs represent visual information.


Assuntos
Encéfalo/fisiologia , Redes Neurais de Computação , Visão Ocular/fisiologia , Adolescente , Adulto , Humanos , Processamento de Imagem Assistida por Computador , Estimulação Luminosa , Adulto Jovem
16.
Sci Rep ; 10(1): 18107, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093544

RESUMO

Here, we explored the role of perceived interpersonal closeness in joint action using the joint Simon task in adolescents and adults. In a two-choice reaction time task, spatially assigned responses to non-spatial stimulus features are faster when the stimulus and response are in congruent locations than not. This phenomenon is called Simon effect and is absent or strongly attenuated when a participant responds to only one of the stimuli. However, the effect reappears when two participants carry out the same go/no-go tasks cooperatively. This re-emergence of the Simon effect in joint action is called the joint Simon effect (JSE). In this study, we first replicated the standard and joint Simon effects in adolescents (n = 43), as well as adults (n = 39) with similar magnitude of the effects in the two age groups. The magnitude of the JSE was positively correlated with the level of closeness as measured by Inclusion of Other in the Self scale. This correlation was not significantly different in adolescents (n = 73) compared to adults (n = 71). Our findings show that joint action is sensitive to the social factor such as interpersonal closeness, and the underlying mechanisms are already mature by adolescence.


Assuntos
Atenção , Comportamento de Escolha , Comportamento Cooperativo , Relações Interpessoais , Desempenho Psicomotor , Tempo de Reação , Adolescente , Adulto , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Percepção Social , Adulto Jovem
17.
PLoS Comput Biol ; 16(5): e1007821, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32469884

RESUMO

The ability to infer intention lies at the basis of many social interactions played out via motor actions. We consider a simple paradigm of this ability in humans using data from experiments simulating an antagonistic game between an Attacker and a Blocker. Evidence shows early inference of an Attacker move by as much as 100ms but the nature of the informational cues signaling the impending move remains unknown. We show that the transition to action has the hallmark of a critical transition that is accompanied by early warning signals. These early warning signals occur as much as 130 ms before motion ensues-showing a sharp rise in motion autocorrelation at lag-1 and a sharp rise in the autocorrelation decay time. The early warning signals further correlate strongly with Blocker response times. We analyze the variance of the motion near the point of transition and find that it diverges in a manner consistent with the dynamics of a fold-transition. To test if humans can recognize and act upon these early warning signals, we simulate the dynamics of fold-transition events and ask people to recognize the onset of directional motion: participants react faster to fold-transition dynamics than to its uncorrelated counterpart. Together, our findings suggest that people can recognize the intent and onset of motion by inferring its early warning signals.


Assuntos
Antecipação Psicológica/fisiologia , Intenção , Tempo de Reação/fisiologia , Adulto , Sinais (Psicologia) , Feminino , Humanos , Masculino , Movimento (Física) , Adulto Jovem
18.
Front Psychol ; 11: 579876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584415

RESUMO

When humans are required to perform two or more tasks concurrently, their performance declines as the tasks get closer together in time. Here, we investigated the mechanisms of this cognitive performance decline using a dual-task paradigm in a simulated driving environment, and using drift-diffusion modeling, examined if the two tasks are processed in a serial or a parallel manner. Participants performed a lane change task, along with an image discrimination task. We systematically varied the time difference between the onset of the two tasks (Stimulus Onset Asynchrony, SOA) and measured its effect on the amount of dual-task interference. Results showed that the reaction times (RTs) of the two tasks in the dual-task condition were higher than those in the single-task condition. SOA influenced the RTs of both tasks when they were presented second and the RTs of the image discrimination task when it was presented first. Results of drift-diffusion modeling indicated that dual-task performance affects both the rate of evidence accumulation and the delays outside the evidence accumulation period. These results suggest that a hybrid model containing features of both parallel and serial processing best accounts for the results. Next, manipulating the predictability of the order of the two tasks, we showed that in unpredictable conditions, the order of the response to the two tasks changes, causing attenuation in the effect of SOA. Together, our findings suggest higher-level executive functions are involved in managing the resources and controlling the processing of the tasks during dual-task performance in naturalistic settings.

19.
Neuropsychologia ; 132: 107140, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31301350

RESUMO

Recent studies have reported the existence of rich non-spatial visual object representations in both human and monkey posterior parietal cortex (PPC), similar to those found in occipito-temporal cortex (OTC). Despite this similarity, we recently showed that visual object representation still differ between OTC and PPC in two aspects. In one study, by manipulating whether object shape or color was task relevant, we showed that visual object representations were under greater top-down attention and task control in PPC than in OTC (Vaziri-Pashkam & Xu, 2017, J Neurosci). In another study, using a bottom-up data driven approach, we showed that there exists a large separation between PPC and OTC regions in the representational space, with OTC regions lining up hierarchically along an OTC pathway and PPC regions lining up hierarchically along an orthogonal PPC pathway (Vaziri-Pashkam & Xu, 2019, Cereb Cortex). To understand the interaction of goal-driven visual processing and the two-pathway structure in the representational space, here we performed a set of new analyses of the data from the three experiments of Vaziri-Pashkam and Xu (2017) and directly compared the two-pathway separation of OTC and PPC regions when object shapes were attended and task relevant and when they were not. We found that in all three experiments the correlation of visual object representational structure between superior IPS (a key PPC visual region) and lateral and ventral occipito-temporal regions (higher OTC visual regions) became greater when object shapes were attended than when they were not. This modified the two-pathway structure, with PPC regions moving closer to higher OTC regions and a compression of the PPC pathway towards the OTC pathway in the representational space when shapes were attended. Consistent with this observation, the correlation between neural and behavioral measures of visual representational structure was also higher in superior IPS when shapes were attended than when they were not. By comparing representational structures across experiments and tasks, we further showed that attention to object shape resulted in the formation of more similar object representations in superior IPS across experiments than between the two tasks within the same experiment despite noise and stimulus differences across the experiments. Overall, these results demonstrated that, despite the separation of the OTC and PPC pathways in the representational space, the visual representational structure of PPC is flexible and can be modulated by the task demand. This reaffirms the adaptive nature of visual processing in PPC and further distinguishes it from the more invariant nature of visual processing in OTC.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Percepção de Cores/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Reconhecimento Visual de Modelos/fisiologia , Adulto Jovem
20.
J Vis ; 19(7): 16, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31355865

RESUMO

Humans have a remarkable ability to predict the actions of others. To address what information enables this prediction and how the information is modulated by social context, we used videos collected during an interactive reaching game. Two participants (an "initiator" and a "responder") sat on either side of a plexiglass screen on which two targets were affixed. The initiator was directed to tap one of the two targets, and the responder had to either beat the initiator to the target (competition) or arrive at the same time (cooperation). In a psychophysics experiment, new observers predicted the direction of the initiators' reach from brief clips, which were clipped relative to when the initiator began reaching. A machine learning classifier performed the same task. Both humans and the classifier were able to determine the direction of movement before the finger lift-off in both social conditions. Further, using an information mapping technique, the relevant information was found to be distributed throughout the body of the initiator in both social conditions. Our results indicate that we reveal our intentions during cooperation, in which communicating the future course of actions is beneficial, and also during competition despite the social motivation to reveal less information.


Assuntos
Comportamento Competitivo/fisiologia , Comportamento Cooperativo , Intenção , Adulto , Feminino , Humanos , Masculino , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Psicofísica , Gravação em Vídeo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...