Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 7434, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743643

RESUMO

Interactions between bacteria and colon cancer cells influence the transcription of the host cell. Yet is it undetermined whether the bacteria itself or the communication between the host and bacteria is responsible for the genomic changes in the eukaryotic cell. Now, we have investigated the genomic and epigenetic consequences of co-culturing colorectal carcinoma cells with membrane vesicles from pathogenic bacteria Vibrio cholerae and non-pathogenic commensal bacteria Escherichia coli. Our study reveals that membrane vesicles from pathogenic and commensal bacteria have a global impact on the gene expression of colon-carcinoma cells. The changes in gene expression correlate positively with both epigenetic changes and chromatin accessibility of promoters at transcription start sites of genes induced by both types of membrane vesicles. Moreover, we have demonstrated that membrane vesicles obtained only from V. cholerae induced the expression of genes associated with epithelial cell differentiation. Altogether, our study suggests that the observed genomic changes in host cells might be due to specific components of membrane vesicles and do not require communication by direct contact with the bacteria.


Assuntos
Membrana Celular/metabolismo , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Epigênese Genética , Escherichia coli K12/citologia , Transcrição Gênica , Vibrio cholerae/citologia , Linhagem Celular , Neoplasias do Colo/genética , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-28516064

RESUMO

Bacterial membrane vesicle (MV) production has been mainly studied in Gram-negative species. In this study, we show that Listeria monocytogenes, a Gram-positive pathogen that causes the food-borne illness listeriosis, produces MVs both in vitro and in vivo. We found that a major virulence factor, the pore-forming hemolysin listeriolysin O (LLO), is tightly associated with the MVs, where it resides in an oxidized, inactive state. Previous studies have shown that LLO may induce cell death and autophagy. To monitor possible effects of LLO and MVs on autophagy, we performed assays for LC3 lipidation and LDH sequestration as well as analysis by confocal microscopy of HEK293 cells expressing GFP-LC3. The results revealed that MVs alone did not affect autophagy whereas they effectively abrogated autophagy induced by pure LLO or by another pore-forming toxin from Vibrio cholerae, VCC. Moreover, Listeria monocytogenes MVs significantly decreased Torin1-stimulated macroautophagy. In addition, MVs protected against necrosis of HEK293 cells caused by the lytic action of LLO. We explored the mechanisms of LLO-induced autophagy and cell death and demonstrated that the protective effect of MVs involves an inhibition of LLO-induced pore formation resulting in inhibition of autophagy and the lytic action on eukaryotic cells. Further, we determined that these MVs help bacteria to survive inside eukaryotic cells (mouse embryonic fibroblasts). Taken together, these findings suggest that intracellular release of MVs from L. monocytogenes may represent a bacterial strategy to survive inside host cells, by its control of LLO activity and by avoidance of destruction from the autophagy system during infection.


Assuntos
Autofagia/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Morte Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas de Choque Térmico/farmacologia , Proteínas Hemolisinas/farmacologia , Listeria monocytogenes/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Membrana Celular/microbiologia , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Listeria monocytogenes/citologia , Listeria monocytogenes/patogenicidade , Listeriose/metabolismo , Macrófagos/microbiologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Naftiridinas/farmacologia , Células RAW 264.7 , Fatores de Virulência/metabolismo
3.
PLoS One ; 10(7): e0134098, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222047

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) are known to release from almost all Gram-negative bacteria during normal growth. OMVs carry different biologically active toxins and enzymes into the surrounding environment. We suggest that OMVs may therefore be able to transport bacterial proteases into the target host cells. We present here an analysis of the Vibrio cholerae OMV-associated protease PrtV. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we demonstrated that PrtV was secreted from the wild type V. cholerae strain C6706 via the type II secretion system in association with OMVs. By immunoblotting and electron microscopic analysis using immunogold labeling, the association of PrtV with OMVs was examined. We demonstrated that OMV-associated PrtV was biologically active by showing altered morphology and detachment of cells when the human ileocecum carcinoma (HCT8) cells were treated with OMVs from the wild type V. cholerae strain C6706 whereas cells treated with OMVs from the prtV isogenic mutant showed no morphological changes. Furthermore, OMV-associated PrtV protease showed a contribution to bacterial resistance towards the antimicrobial peptide LL-37. CONCLUSION/SIGNIFICANCE: Our findings suggest that OMVs released from V. cholerae can deliver a processed, biologically active form of PrtV that contributes to bacterial interactions with target host cells.


Assuntos
Membrana Celular/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Vibrio cholerae/citologia , Vibrio cholerae/enzimologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular Tumoral , Farmacorresistência Bacteriana , Espaço Extracelular/metabolismo , Humanos , Transporte Proteico , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Catelicidinas
4.
PLoS One ; 9(9): e106731, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25187967

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) released from Gram-negative bacteria can serve as vehicles for the translocation of virulence factors. Vibrio cholerae produce OMVs but their putative role in translocation of effectors involved in pathogenesis has not been well elucidated. The V. cholerae cytolysin (VCC), is a pore-forming toxin that lyses target eukaryotic cells by forming transmembrane oligomeric ß-barrel channels. It is considered a potent toxin that contributes to V. cholerae pathogenesis. The mechanisms involved in the secretion and delivery of the VCC have not been extensively studied. METHODOLOGY/PRINCIPAL FINDINGS: OMVs from V. cholerae strains were isolated and purified using a differential centrifugation procedure and Optiprep centrifugation. The ultrastructure and the contents of OMVs were examined under the electron microscope and by immunoblot analyses respectively. We demonstrated that VCC from V. cholerae strain V:5/04 was secreted in association with OMVs and the release of VCC via OMVs is a common feature among V. cholerae strains. The biological activity of OMV-associated VCC was investigated using contact hemolytic assay and epithelial cell cytotoxicity test. It showed toxic activity on both red blood cells and epithelial cells. Our results indicate that the OMVs architecture might play a role in stability of VCC and thereby can enhance its biological activities in comparison with the free secreted VCC. Furthermore, we tested the role of OMV-associated VCC in host cell autophagy signalling using confocal microscopy and immunoblot analysis. We observed that OMV-associated VCC triggered an autophagy response in the target cell and our findings demonstrated for the first time that autophagy may operate as a cellular defence mechanism against an OMV-associated bacterial virulence factor. CONCLUSION/SIGNIFICANCE: Biological assays of OMVs from the V. cholerae strain V:5/04 demonstrated that OMV-associated VCC is indeed biologically active and induces toxicity on mammalian cells and furthermore can induce autophagy.


Assuntos
Proteínas de Bactérias/toxicidade , Citotoxinas/toxicidade , Vesículas Extracelulares/química , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Vibrio cholerae/química , Fatores de Virulência/toxicidade , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Citotoxinas/biossíntese , Citotoxinas/isolamento & purificação , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Proteínas Citotóxicas Formadoras de Poros/biossíntese , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/toxicidade , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Fatores de Virulência/biossíntese , Fatores de Virulência/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...