Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(26): eadn3310, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924412

RESUMO

Thoeris defense systems protect bacteria from infection by phages via abortive infection. In these systems, ThsB proteins serve as sensors of infection and generate signaling nucleotides that activate ThsA effectors. Silent information regulator and SMF/DprA-LOG (SIR2-SLOG) containing ThsA effectors are activated by cyclic ADP-ribose (ADPR) isomers 2'cADPR and 3'cADPR, triggering abortive infection via nicotinamide adenine dinucleotide (NAD+) depletion. Here, we characterize Thoeris systems with transmembrane and macro domain (TM-macro)-containing ThsA effectors. We demonstrate that ThsA macro domains bind ADPR and imidazole adenine dinucleotide (IAD), but not 2'cADPR or 3'cADPR. Combining crystallography, in silico predictions, and site-directed mutagenesis, we show that ThsA macro domains form nucleotide-induced higher-order oligomers, enabling TM domain clustering. We demonstrate that ThsB can produce both ADPR and IAD, and we identify a ThsA TM-macro-specific ThsB subfamily with an active site resembling deoxy-nucleotide and deoxy-nucleoside processing enzymes. Collectively, our study demonstrates that Thoeris systems with SIR2-SLOG and TM-macro ThsA effectors trigger abortive infection via distinct mechanisms.


Assuntos
Domínios Proteicos , Bacteriófagos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Modelos Moleculares , NAD/metabolismo , Ligação Proteica
2.
mBio ; 15(4): e0211423, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470050

RESUMO

Multidrug-resistant bacteria such as the opportunistic pathogen Pseudomonas aeruginosa, which causes life-threatening infections especially in immunocompromised individuals and cystic fibrosis patients, pose an increasing threat to public health. In the search for new treatment options, P. aeruginosa uridine diphosphate-glucose pyrophosphorylase (PaUGP) has been proposed as a novel drug target because it is required for the biosynthesis of important virulence factors and linked to pathogenicity in animal models. Here, we show that UGP-deficient P. aeruginosa exhibits severely reduced virulence against human lung tissue and cells, emphasizing the enzyme's suitability as a drug target. To establish a basis for the development of selective PaUGP inhibitors, we solved the product-bound crystal structure of tetrameric PaUGP and conducted a comprehensive structure-function analysis, identifying key residues at two different molecular interfaces that are essential for tetramer integrity and catalytic activity and demonstrating that tetramerization is pivotal for PaUGP function. Importantly, we show that part of the PaUGP oligomerization interface is uniquely conserved across bacterial UGPs but does not exist in the human enzyme, therefore representing an allosteric site that may be targeted to selectively inhibit bacterial UGPs.IMPORTANCEInfections with the opportunistic bacterial pathogen Pseudomonas aeruginosa are becoming increasingly difficult to treat due to multidrug resistance. Here, we show that the enzyme uridine diphosphate-glucose pyrophosphorylase (UGP) is involved in P. aeruginosa virulence toward human lung tissue and cells, making it a potential target for the development of new antibacterial drugs. Our exploration of P. aeruginosa (Pa)UGP structure-function relationships reveals that the activity of PaUGP depends on the formation of a tetrameric enzyme complex. We found that a molecular interface involved in tetramer formation is conserved in all bacterial UGPs but not in the human enzyme, and therefore hypothesize that it provides an ideal point of attack to selectively inhibit bacterial UGPs and exploit them as drug targets.


Assuntos
Infecções por Pseudomonas , Fatores de Virulência , Animais , Humanos , Fatores de Virulência/genética , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Glucose , Difosfato de Uridina
3.
J Enzyme Inhib Med Chem ; 39(1): 2313055, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38416868

RESUMO

Toll-like receptor (TLR) innate immunity signalling protects against pathogens, but excessive or prolonged signalling contributes to a range of inflammatory conditions. Structural information on the TLR cytoplasmic TIR (Toll/interleukin-1 receptor) domains and the downstream adaptor proteins can help us develop inhibitors targeting this pathway. The small molecule o-vanillin has previously been reported as an inhibitor of TLR2 signalling. To study its mechanism of action, we tested its binding to the TIR domain of the TLR adaptor MAL/TIRAP (MALTIR). We show that o-vanillin binds to MALTIR and inhibits its higher-order assembly in vitro. Using NMR approaches, we show that o-vanillin forms a covalent bond with lysine 210 of MAL. We confirm in mouse and human cells that o-vanillin inhibits TLR2 but not TLR4 signalling, independently of MAL, suggesting it may covalently modify TLR2 signalling complexes directly. Reactive aldehyde-containing small molecules such as o-vanillin may target multiple proteins in the cell.


Assuntos
Benzaldeídos , Lisina , Receptor 2 Toll-Like , Humanos , Animais , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Toll-Like/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1/metabolismo
4.
Microbiol Spectr ; 11(3): e0500522, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098897

RESUMO

Escherichia coli signal peptidase I (LepB) has been shown to inefficiently cleave secreted proteins with aromatic amino acids at the second position after the signal peptidase cleavage site (P2'). The Bacillus subtilis exported protein TasA contains a phenylalanine at P2', which in B. subtilis is cleaved by a dedicated archaeal-organism-like signal peptidase, SipW. We have previously shown that when the TasA signal peptide is fused to maltose binding protein (MBP) up to the P2' position, the TasA-MBP fusion protein is cleaved very inefficiently by LepB. However, the precise reason why the TasA signal peptide hinders cleavage by LepB is not known. In this study, a set of 11 peptides were designed to mimic the inefficiently cleaved secreted proteins, wild-type TasA and TasA-MBP fusions, to determine whether the peptides interact with and inhibit the function of LepB. The binding affinity and inhibitory potential of the peptides against LepB were assessed by surface plasmon resonance (SPR) and a LepB enzyme activity assay. Molecular modeling of the interaction between TasA signal peptide and LepB indicated that the tryptophan residue at P2 (two amino acids before the cleavage site) inhibited the active site serine-90 residue on LepB from accessing the cleavage site. Replacing the P2 tryptophan with alanine (W26A) allowed for more efficient processing of the signal peptide when the TasA-MBP fusion was expressed in E. coli. The importance of this residue to inhibit signal peptide cleavage and the potential to design LepB inhibitors based on the TasA signal peptide are discussed. IMPORTANCE Signal peptidase I is an important drug target, and understanding its substrate is critically important to develop new bacterium-specific drugs. To that end, we have a unique signal peptide that we have shown is refractory to processing by LepB, the essential signal peptidase I in E. coli, but previously has been shown to be processed by a more human-like signal peptidase found in some bacteria. In this study, we demonstrate how the signal peptide can bind but is unable to be processed by LepB, using a variety of methods. This can inform the field on how to better design drugs that can target LepB and understand the differences between bacterial and human-like signal peptidases.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Especificidade por Substrato , Triptofano/metabolismo , Sequência de Aminoácidos , Sinais Direcionadores de Proteínas
5.
Curr Opin Plant Biol ; 73: 102364, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086529

RESUMO

TIR (Toll/interlukin-1 receptor) domains are found in archaea, bacteria and eukaryotes, featured in proteins generally associated with immune functions. In plants, they are found in a large group of NLRs (nucleotide-binding leucine-rich repeat receptors), NLR-like proteins and TIR-only proteins. They are also present in effector proteins from phytopathogenic bacteria that are associated with suppression of host immunity. TIR domains from plants and bacteria are enzymes that cleave NAD+ (nicotinamide adenine dinucleotide, oxidized form) and other nucleotides. In dicot plants, TIR-derived signalling molecules activate downstream immune signalling proteins, the EDS1 (enhanced disease susceptibility 1) family proteins, and in turn helper NLRs. Recent work has brought major advances in understanding how TIR domains work, how they produce signalling molecules and how these products signal.


Assuntos
Nucleotídeos , Imunidade Vegetal , Imunidade Vegetal/genética , Plantas/genética , Plantas/metabolismo , Domínios Proteicos , Proteínas NLR/genética , Bactérias/metabolismo , Doenças das Plantas
6.
Curr Opin Microbiol ; 74: 102316, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37084552

RESUMO

The Toll/interleukin-1 receptor (TIR) domain is found in animal, plant, and bacterial immune systems. It was first described as a protein-protein interaction module mediating signalling downstream of the Toll-like receptor and interleukin-1 receptor families in animals. However, studies of the pro-neurodegenerative protein sterile alpha and TIR motif containing 1, plant immune receptors, and many bacterial TIR domain-containing proteins revealed that TIR domains have enzymatic activities and can produce diverse nucleotide products using nicotinamide adenine dinucleotide (NAD+) or nucleic acids as substrates. Recent work has led to key advances in understanding how TIR domain enzymes work in bacterial and plant immune systems as well as the function of their signalling molecules.


Assuntos
Bactérias , Receptores de Interleucina-1 , Animais , Receptores de Interleucina-1/química , Receptores de Interleucina-1/metabolismo , Bactérias/genética , Bactérias/metabolismo , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Imunidade Vegetal/genética
7.
Neuroscientist ; : 10738584231162508, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002660

RESUMO

Axons are an essential component of the nervous system, and axon degeneration is an early feature of many neurodegenerative disorders. The NAD+ metabolome plays an essential role in regulating axonal integrity. Axonal levels of NAD+ and its precursor NMN are controlled in large part by the NAD+ synthesizing survival factor NMNAT2 and the pro-neurodegenerative NADase SARM1, whose activation triggers axon destruction. SARM1 has emerged as a promising axon-specific target for therapeutic intervention, and its function, regulation, structure, and role in neurodegenerative diseases have been extensively characterized in recent years. In this review, we first introduce the key molecular players involved in the SARM1-dependent axon degeneration program. Next, we summarize recent major advances in our understanding of how SARM1 is kept inactive in healthy neurons and how it becomes activated in injured or diseased neurons, which has involved important insights from structural biology. Finally, we discuss the role of SARM1 in neurodegenerative disorders and environmental neurotoxicity and its potential as a therapeutic target.

8.
Sci Adv ; 9(11): eade8487, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36930706

RESUMO

Toll/interleukin-1 receptor (TIR) domain proteins function in cell death and immunity. In plants and bacteria, TIR domains are often enzymes that produce isomers of cyclic adenosine 5'-diphosphate-ribose (cADPR) as putative immune signaling molecules. The identity and functional conservation of cADPR isomer signals is unclear. A previous report found that a plant TIR could cross-activate the prokaryotic Thoeris TIR-immune system, suggesting the conservation of plant and prokaryotic TIR-immune signals. Here, we generate autoactive Thoeris TIRs and test the converse hypothesis: Do prokaryotic Thoeris TIRs also cross-activate plant TIR immunity? Using in planta and in vitro assays, we find that Thoeris and plant TIRs generate overlapping sets of cADPR isomers and further clarify how plant and Thoeris TIRs activate the Thoeris system via producing 3'cADPR. This study demonstrates that the TIR signaling requirements for plant and prokaryotic immune systems are distinct and that TIRs across kingdoms generate a diversity of small-molecule products.


Assuntos
ADP-Ribose Cíclica , NAD+ Nucleosidase , NAD+ Nucleosidase/metabolismo , Receptores de Interleucina-1 , Transdução de Sinais , Bactérias/metabolismo , Plantas/metabolismo
9.
Science ; 377(6614): eadc8969, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36048923

RESUMO

Cyclic adenosine diphosphate (ADP)-ribose (cADPR) isomers are signaling molecules produced by bacterial and plant Toll/interleukin-1 receptor (TIR) domains via nicotinamide adenine dinucleotide (oxidized form) (NAD+) hydrolysis. We show that v-cADPR (2'cADPR) and v2-cADPR (3'cADPR) isomers are cyclized by O-glycosidic bond formation between the ribose moieties in ADPR. Structures of 2'cADPR-producing TIR domains reveal conformational changes that lead to an active assembly that resembles those of Toll-like receptor adaptor TIR domains. Mutagenesis reveals a conserved tryptophan that is essential for cyclization. We show that 3'cADPR is an activator of ThsA effector proteins from the bacterial antiphage defense system termed Thoeris and a suppressor of plant immunity when produced by the effector HopAM1. Collectively, our results reveal the molecular basis of cADPR isomer production and establish 3'cADPR in bacteria as an antiviral and plant immunity-suppressing signaling molecule.


Assuntos
ADP-Ribosil Ciclase , Proteínas Adaptadoras de Transporte Vesicular , Bactérias , Proteínas de Bactérias , ADP-Ribose Cíclica , Imunidade Vegetal , Receptores Toll-Like , ADP-Ribosil Ciclase/química , ADP-Ribosil Ciclase/genética , ADP-Ribosil Ciclase/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , ADP-Ribose Cíclica/biossíntese , ADP-Ribose Cíclica/química , Isomerismo , NAD/metabolismo , Domínios Proteicos , Receptores de Interleucina-1/química , Transdução de Sinais , Receptores Toll-Like/química , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Triptofano/química , Triptofano/genética
10.
PLoS Pathog ; 18(6): e1010582, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35700218

RESUMO

Extra-intestinal pathogenic Escherichia coli (ExPEC) belong to a critical priority group of antibiotic resistant pathogens. ExPEC establish gut reservoirs that seed infection of the urinary tract and bloodstream, but the mechanisms of gut colonisation remain to be properly understood. Ucl fimbriae are attachment organelles that facilitate ExPEC adherence. Here, we investigated cellular receptors for Ucl fimbriae and Ucl expression to define molecular mechanisms of Ucl-mediated ExPEC colonisation of the gut. We demonstrate differential expression of Ucl fimbriae in ExPEC sequence types associated with disseminated infection. Genome editing of strains from two common sequence types, F11 (ST127) and UTI89 (ST95), identified a single nucleotide polymorphism in the ucl promoter that changes fimbriae expression via activation by the global stress-response regulator OxyR, leading to altered gut colonisation. Structure-function analysis of the Ucl fimbriae tip-adhesin (UclD) identified high-affinity glycan receptor targets, with highest affinity for sialyllacto-N-fucopentose VI, a structure likely to be expressed on the gut epithelium. Comparison of the UclD adhesin to the homologous UcaD tip-adhesin from Proteus mirabilis revealed that although they possess a similar tertiary structure, apart from lacto-N-fucopentose VI that bound to both adhesins at low-micromolar affinity, they recognize different fucose- and glucose-containing oligosaccharides. Competitive surface plasmon resonance analysis together with co-structural investigation of UcaD in complex with monosaccharides revealed a broad-specificity glycan binding pocket shared between UcaD and UclD that could accommodate these interactions. Overall, our study describes a mechanism of adaptation that augments establishment of an ExPEC gut reservoir to seed disseminated infections, providing a pathway for the development of targeted anti-adhesion therapeutics.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Adesinas Bacterianas/metabolismo , Adesinas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/metabolismo , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Humanos , Enteropatias , Polissacarídeos/metabolismo
11.
J Inorg Biochem ; 231: 111787, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35303613

RESUMO

Acinetobacter baumannii is a Gram-negative nosocomial pathogen associated with significant disease. Crucial to the survival and pathogenesis of A. baumannii is the ability to acquire essential micronutrients such as Zn(II). Recruitment of Zn(II) by A. baumannii is mediated, at least in part, by the periplasmic solute-binding protein ZnuA and the ATP-binding cassette transporter ZnuBC. Here, we combined genomic, biochemical, and structural approaches to characterize A. baumannii AB5075_UW ZnuA. Bioinformatic analyses using a diverse collection of A. baumannii genomes determined that ZnuA is highly conserved, with the binding site comprised by three strictly conserved histidine residues. The structure of metal-free ZnuA was determined at 2.1 Å resolution, with molecular dynamics analyses revealing loop α2ß2, which harbors the putative Zn(II)-coordinating residue His41, to be highly mobile in the metal-free state. The contribution of the putative binding site histidine residues to Zn(II) interaction was further probed by mutagenesis. Analysis of ZnuA mutant variants was performed by quantitative metal binding assays, differential scanning fluorimetry, and affinity measurements, which showed that all three histidine residues contributed to Zn(II)-recruitment, albeit to different extents. Collectively, these analyses provide insight into the mechanism of Zn(II)-binding by A. baumannii ZnuA and expand our understanding of the functional diversity of Zn(II)-recruiting proteins.


Assuntos
Acinetobacter baumannii , Transportadores de Cassetes de Ligação de ATP/genética , Acinetobacter baumannii/genética , Proteínas de Bactérias/química , Histidina/química , Modelos Moleculares , Zinco/química
12.
Mol Cell ; 82(9): 1643-1659.e10, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35334231

RESUMO

The NADase SARM1 (sterile alpha and TIR motif containing 1) is a key executioner of axon degeneration and a therapeutic target for several neurodegenerative conditions. We show that a potent SARM1 inhibitor undergoes base exchange with the nicotinamide moiety of nicotinamide adenine dinucleotide (NAD+) to produce the bona fide inhibitor 1AD. We report structures of SARM1 in complex with 1AD, NAD+ mimetics and the allosteric activator nicotinamide mononucleotide (NMN). NMN binding triggers reorientation of the armadillo repeat (ARM) domains, which disrupts ARM:TIR interactions and leads to formation of a two-stranded TIR domain assembly. The active site spans two molecules in these assemblies, explaining the requirement of TIR domain self-association for NADase activity and axon degeneration. Our results reveal the mechanisms of SARM1 activation and substrate binding, providing rational avenues for the design of new therapeutics targeting SARM1.


Assuntos
Proteínas do Domínio Armadillo , NAD , Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , NAD/metabolismo , NAD+ Nucleosidase/metabolismo , Domínios Proteicos
13.
FEBS Lett ; 596(7): 886-897, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038778

RESUMO

The Toll/interleukin-1 receptor (TIR) domains are key innate immune signalling modules. Here, we present the crystal structure of the TIR domain of human interleukin-1 receptor 10 (IL-1R10), also called interleukin 1 receptor accessory protein like 2. It is similar to that of IL-1R9 (IL-1RAPL1) but shows significant structural differences to those from Toll-like receptors (TLRs) and the adaptor proteins MyD88 adaptor-like protein (MAL) and MyD88. Interactions of TIR domains in their respective crystals and the higher-order assemblies (MAL and MyD88) reveal the presence of a common 'BCD surface', suggesting its functional significance. We also show that the TIR domains of IL-1R10 and IL-1R9 lack NADase activity, consistent with their structures. Our study provides a foundation for unravelling the functions of IL-1R9 and IL-1R10.


Assuntos
Proteína Acessória do Receptor de Interleucina-1/química , Fator 88 de Diferenciação Mieloide , Receptores de Interleucina-1 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Receptores de Interleucina-1/genética , Transdução de Sinais
14.
Elife ; 102021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34870595

RESUMO

Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.


Assuntos
Proteínas do Domínio Armadillo/genética , Axônios/patologia , Proteínas do Citoesqueleto/genética , Degeneração Neural/fisiopatologia , Neurotoxinas/farmacologia , Compostos de Fenilureia/farmacologia , Animais , Proteínas do Domínio Armadillo/metabolismo , Axônios/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Feminino , Masculino , Camundongos , Degeneração Neural/induzido quimicamente , Rodenticidas/farmacologia
15.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 10): 364-373, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605441

RESUMO

The crystal structure determination of the armadillo repeat motif (ARM) domain of Drosophila SARM1 (dSARM1ARM) is described, which required the combination of a number of sources of phase information in order to obtain interpretable electron-density maps. SARM1 is a central executioner of programmed axon degeneration, a common feature of the early phase of many neurodegenerative diseases. SARM1 is held in the inactive state in healthy axons by its N-terminal auto-inhibitory ARM domain, and is activated to cleave NAD upon injury, triggering subsequent axon degeneration. To characterize the molecular mechanism of SARM1 activation, it was sought to determine the crystal structure of the SARM1 ARM domain. Here, the recombinant production and crystallization of dSARM1ARM is described, as well as the unconventional process used for structure determination. Crystals were obtained in the presence of NMN, a precursor of NAD and a potential activator of SARM1, only after in situ proteolysis of the N-terminal 63 residues. After molecular-replacement attempts failed, the crystal structure of dSARM1ARM was determined at 1.65 Šresolution using the MIRAS phasing technique with autoSHARP, combining data from native, selenomethionine-labelled and bromide-soaked crystals. The structure will further the understanding of SARM1 regulation.


Assuntos
Proteínas do Domínio Armadillo/química , Cristalografia por Raios X/métodos , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Animais , Modelos Moleculares , Conformação Proteica
16.
Exp Neurol ; 345: 113842, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403688

RESUMO

SARM1 is an inducible NAD+ hydrolase that is the central executioner of pathological axon loss. Recently, we elucidated the molecular mechanism of SARM1 activation, demonstrating that SARM1 is a metabolic sensor regulated by the levels of NAD+ and its precursor, nicotinamide mononucleotide (NMN), via their competitive binding to an allosteric site within the SARM1 N-terminal ARM domain. In healthy neurons with abundant NAD+, binding of NAD+ blocks access of NMN to this allosteric site. However, with injury or disease the levels of the NAD+ biosynthetic enzyme NMNAT2 drop, increasing the NMN/ NAD+ ratio and thereby promoting NMN binding to the SARM1 allosteric site, which in turn induces a conformational change activating the SARM1 NAD+ hydrolase. Hence, NAD+ metabolites both regulate the activation of SARM1 and, in turn, are regulated by the SARM1 NAD+ hydrolase. This dual upstream and downstream role for NAD+ metabolites in SARM1 function has hindered mechanistic understanding of axoprotective mechanisms that manipulate the NAD+ metabolome. Here we reevaluate two methods that potently block axon degeneration via modulation of NAD+ related metabolites, 1) the administration of the NMN biosynthesis inhibitor FK866 in conjunction with the NAD+ precursor nicotinic acid riboside (NaR) and 2) the neuronal expression of the bacterial enzyme NMN deamidase. We find that these approaches not only lead to a decrease in the levels of the SARM1 activator NMN, but also an increase in the levels of the NAD+ precursor nicotinic acid mononucleotide (NaMN). We show that NaMN inhibits SARM1 activation, and demonstrate that this NaMN-mediated inhibition is important for the long-term axon protection induced by these treatments. Analysis of the NaMN-ARM domain co-crystal structure shows that NaMN competes with NMN for binding to the SARM1 allosteric site and promotes the open, autoinhibited configuration of SARM1 ARM domain. Together, these results demonstrate that the SARM1 allosteric pocket can bind a diverse set of metabolites including NMN, NAD+, and NaMN to monitor cellular NAD+ homeostasis and regulate SARM1 NAD+ hydrolase activity. The relative promiscuity of the allosteric site may enable the development of potent pharmacological inhibitors of SARM1 activation for the treatment of neurodegenerative disorders.


Assuntos
Proteínas do Domínio Armadillo/antagonistas & inibidores , Proteínas do Domínio Armadillo/metabolismo , Axônios/efeitos dos fármacos , Axônios/metabolismo , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Mononucleotídeo de Nicotinamida/análogos & derivados , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Proteínas do Domínio Armadillo/genética , Células Cultivadas , Proteínas do Citoesqueleto/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mononucleotídeo de Nicotinamida/farmacologia
17.
Nat Commun ; 12(1): 2578, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972532

RESUMO

MyD88 and MAL are Toll-like receptor (TLR) adaptors that signal to induce pro-inflammatory cytokine production. We previously observed that the TIR domain of MAL (MALTIR) forms filaments in vitro and induces formation of crystalline higher-order assemblies of the MyD88 TIR domain (MyD88TIR). These crystals are too small for conventional X-ray crystallography, but are ideally suited to structure determination by microcrystal electron diffraction (MicroED) and serial femtosecond crystallography (SFX). Here, we present MicroED and SFX structures of the MyD88TIR assembly, which reveal a two-stranded higher-order assembly arrangement of TIR domains analogous to that seen previously for MALTIR. We demonstrate via mutagenesis that the MyD88TIR assembly interfaces are critical for TLR4 signaling in vivo, and we show that MAL promotes unidirectional assembly of MyD88TIR. Collectively, our studies provide structural and mechanistic insight into TLR signal transduction and allow a direct comparison of the MicroED and SFX techniques.


Assuntos
Cristalografia/métodos , Glicoproteínas de Membrana/química , Fator 88 de Diferenciação Mieloide/química , Receptores de Interleucina-1/química , Receptor 4 Toll-Like/química , Dimerização , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Fator 88 de Diferenciação Mieloide/genética , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Receptores de Interleucina-1/genética , Proteínas Recombinantes , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética
18.
Neuron ; 109(7): 1118-1136.e11, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33657413

RESUMO

Axon degeneration is a central pathological feature of many neurodegenerative diseases. Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) is a nicotinamide adenine dinucleotide (NAD+)-cleaving enzyme whose activation triggers axon destruction. Loss of the biosynthetic enzyme NMNAT2, which converts nicotinamide mononucleotide (NMN) to NAD+, activates SARM1 via an unknown mechanism. Using structural, biochemical, biophysical, and cellular assays, we demonstrate that SARM1 is activated by an increase in the ratio of NMN to NAD+ and show that both metabolites compete for binding to the auto-inhibitory N-terminal armadillo repeat (ARM) domain of SARM1. We report structures of the SARM1 ARM domain bound to NMN and of the homo-octameric SARM1 complex in the absence of ligands. We show that NMN influences the structure of SARM1 and demonstrate via mutagenesis that NMN binding is required for injury-induced SARM1 activation and axon destruction. Hence, SARM1 is a metabolic sensor responding to an increased NMN/NAD+ ratio by cleaving residual NAD+, thereby inducing feedforward metabolic catastrophe and axonal demise.


Assuntos
Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/patologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , NAD/metabolismo , Degeneração Neural/genética , Degeneração Neural/patologia , Mononucleotídeo de Nicotinamida/metabolismo , Animais , Ativação Enzimática , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Conformação Proteica
19.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35056083

RESUMO

Fibrillarin (FBL) is an essential and evolutionarily highly conserved S-adenosyl methionine (SAM) dependent methyltransferase. It is the catalytic component of a multiprotein complex that facilitates 2'-O-methylation of ribosomal RNAs (rRNAs), a modification essential for accurate and efficient protein synthesis in eukaryotic cells. It was recently established that human FBL (hFBL) is critical for Nipah, Hendra, and respiratory syncytial virus infections. In addition, overexpression of hFBL contributes towards tumorgenesis and is associated with poor survival in patients with breast cancer, suggesting that hFBL is a potential target for the development of both antiviral and anticancer drugs. An attractive strategy to target cofactor-dependent enzymes is the selective inhibition of cofactor binding, which has been successful for the development of inhibitors against several protein methyltransferases including PRMT5, DOT1L, and EZH2. In this work, we solved crystal structures of the methyltransferase domain of hFBL in apo form and in complex with the cofactor SAM. Screening of a fluorinated fragment library, via X-ray crystallography and 19F NMR spectroscopy, yielded seven hit compounds that competed with cofactor binding, two of which resulted in co-crystal structures. One of these structures revealed unexpected conformational variability in the cofactor binding site, which allows it to accommodate a compound significantly different from SAM. Our structural data provide critical information for the design of selective cofactor competitive inhibitors targeting hFBL, and preliminary elaboration of hit compounds has led to additional cofactor site binders.

20.
Semin Cell Dev Biol ; 99: 96-114, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-29738879

RESUMO

Innate immunity pathways constitute the first line of defense against infections and cellular damage. An emerging concept in these pathways is that signaling involves the formation of finite (e.g. rings in NLRs) or open-ended higher-order assemblies (e.g. filamentous assemblies by members of the death-fold family and TIR domains). This signaling by cooperative assembly formation (SCAF) mechanism allows rapid and strongly amplified responses to minute amounts of stimulus. While the characterization of the molecular mechanisms of SCAF has seen rapid progress, little is known about its regulation. One emerging theme involves proteins produced both in host cells and by pathogens that appear to mimic the signaling components. Recently characterized examples involve the capping of the filamentous assemblies formed by caspase-1 CARDs by the CARD-only protein INCA, and those formed by caspase-8 by the DED-containing protein MC159. By contrast, the CARD-only protein ICEBERG and the DED-containing protein cFLIP incorporate into signaling filaments and presumably interfere with proximity based activation of caspases. We review selected examples of SCAF in innate immunity pathways and focus on the current knowledge on signaling component mimics produced by mammalian and pathogen cells and what is known about their mechanisms of action.


Assuntos
Imunidade Inata/imunologia , Proteínas/imunologia , Transdução de Sinais , Animais , Humanos , Inflamassomos/imunologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...