Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Neurosci ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830763

RESUMO

Chronic sleep disruption (CSD), from insufficient or fragmented sleep, commonly occurs and is an important risk factor for Alzheimer's disease (AD). Underlying mechanisms, however, are not understood. CSD in mice results in degeneration of locus coeruleus neurons (LCn) and CA1 hippocampal neurons and increases hippocampal amyloid-ß42 (Aß42), entorhinal cortex (EC) tau phosphorylation (p-tau) and glial reactivity. LCn injury is increasingly implicated in AD pathogenesis. CSD increases NE turnover in LCn, and LCn norepinephrine (NE) metabolism activates asparagine endopeptidase (AEP), an enzyme known to cleave amyloid precursor protein (APP) and tau into neurotoxic fragments. We hypothesized that CSD would activate LCn AEP in an NE-dependent manner to induce LCn and hippocampal injury. Here, we studied LCn, hippocampal and EC responses to CSD in mice deficient in NE (dopamine ß-hydroxylase (Dbh)-/-) and control male and female mice, using a model of chronic fragmentation of sleep (CFS). Sleep was equally fragmented in Dbh-/- and control male and female mice, yet only Dbh-/- mice conferred resistance to CFS loss of LCn, LCn p-tau, and LCn AEP upregulation and activation as evidenced by an increase in AEP-cleaved APP and tau fragments. Absence of NE also prevented a CFS increase in hippocampal AEP-APP and Aß42 but did not prevent CFS-increased AEP-tau and p-tau in the EC. Collectively, this work demonstrates AEP activation by CFS, establishes key roles for NE in both CFS degeneration of LCn neurons and CFS promotion of forebrain Aß accumulation and, thereby, identifies a key molecular link between CSD and specific AD neural injuries.Significance Statement Sleep disruption commonly occurs and increases the risk of AD, yet molecular mechanisms are not understood. LCn provide NE to most of the brain, where NE has largely neuroprotective roles. However, the metabolism of NE in LCn can promote the formation of pathogenic amyloid and tau fragments implicated in AD neural injury. Here, we found that sleep disruption increases the formation of toxic amyloid and tau fragments in LCn and that NE drives the formation of these fragments, LCn loss and hippocampal amyloid-ß accumulation. This work identifies a molecular window into sleep loss neural injury pertinent to late-onset or spontaneous AD.

2.
Transl Psychiatry ; 13(1): 78, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869037

RESUMO

Disrupted sleep is a symptom of many psychiatric disorders, including substance use disorders. Most drugs of abuse, including opioids, disrupt sleep. However, the extent and consequence of opioid-induced sleep disturbance, especially during chronic drug exposure, is understudied. We have previously shown that sleep disturbance alters voluntary morphine intake. Here, we examine the effects of acute and chronic morphine exposure on sleep. Using an oral self-administration paradigm, we show that morphine disrupts sleep, most significantly during the dark cycle in chronic morphine, with a concomitant sustained increase in neural activity in the Paraventricular Nucleus of the Thalamus (PVT). Morphine binds primarily to Mu Opioid Receptors (MORs), which are highly expressed in the PVT. Translating Ribosome Affinity Purification (TRAP)-Sequencing of PVT neurons that express MORs showed significant enrichment of the circadian entrainment pathway. To determine whether MOR + cells in the PVT mediate morphine-induced sleep/wake properties, we inhibited these neurons during the dark cycle while mice were self-administering morphine. This inhibition decreased morphine-induced wakefulness but not general wakefulness, indicating that MORs in the PVT contribute to opioid-specific wake alterations. Overall, our results suggest an important role for PVT neurons that express MORs in mediating morphine-induced sleep disturbance.


Assuntos
Morfina , Transtornos do Sono-Vigília , Animais , Camundongos , Analgésicos Opioides , Receptores Opioides mu , Neurônios , Tálamo
3.
Front Aging Neurosci ; 14: 1025402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275002

RESUMO

Chronic sleep disruption is a risk factor for Alzheimer's disease (AD), yet mechanisms by which sleep disturbances might promote or exacerbate AD are not understood. Short-term sleep loss acutely increases hippocampal amyloid ß (Aß) in wild type (WT) mice and long-term sleep loss increases amyloid plaque in AD transgenic mouse models. Both effects can be influenced by the wake-promoting neuropeptide, hypocretin (HCRT), but whether HCRT influences amyloid accumulation independent of sleep and wake timing modulation remains unclear. Here, we induced chronic fragmentation of sleep (CFS) in WT and HCRT-deficient mice to elicit similar arousal indices, sleep bout lengths and sleep bout numbers in both genotypes. We then examined the roles of HCRT in CFS-induced hippocampal Aß accumulation and injury. CFS in WT mice resulted in increased Aß42 in the hippocampus along with loss of cholinergic projections and loss of locus coeruleus neurons. Mice with HCRT deficiency conferred resistance to CFS Aß42 accumulation and loss of cholinergic projections in the hippocampus yet evidenced similar CFS-induced loss of locus coeruleus neurons. Collectively, the findings demonstrate specific roles for orexin in sleep disruption hippocampal injury. Significance statement: Chronic fragmentation of sleep (CFS) occurs in common conditions, including sleep apnea syndromes and chronic pain disorders, yet CFS can induce neural injury. Our results demonstrate that under conditions of sleep fragmentation, hypocretin/orexin is essential for the accumulation of amyloid-ß and loss of cholinergic projections in the hippocampus observed in response to CFS yet does not influence locus coeruleus neuron response to CFS.

4.
Trends Neurosci ; 45(9): 678-691, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691776

RESUMO

Recent studies in both humans and animal models call into question the completeness of recovery after chronic sleep disruption. Studies in humans have identified cognitive domains particularly vulnerable to delayed or incomplete recovery after chronic sleep disruption, including sustained vigilance and episodic memory. These findings, in turn, provide a focus for animal model studies to critically test the lasting impact of sleep loss on the brain. Here, we summarize the human response to sleep disruption and then discuss recent findings in animal models examining recovery responses in circuits pertinent to vigilance and memory. We then propose pathways of injury common to various forms of sleep disruption and consider the implications of this injury in aging and in neurodegenerative disorders.


Assuntos
Memória Episódica , Sono , Envelhecimento , Animais , Encéfalo , Humanos , Sono/fisiologia , Vigília/fisiologia
5.
Front Neurosci ; 16: 836693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250468

RESUMO

The opioid epidemic remains a significant healthcare problem and is attributable to over 100,000 deaths per year. Poor sleep increases sensitivity to pain, impulsivity, inattention, and negative affect, all of which might perpetuate drug use. Opioid users have disrupted sleep during drug use and withdrawal and report poor sleep as a reason for relapse. However, preclinical studies investigating the relationship between sleep loss and substance use and the associated underlying neurobiological mechanisms of potential interactions are lacking. One of the most common forms of sleep loss in modern society is chronic short sleep (CSS) (<7 h/nightly for adults). Here, we used an established model of CSS to investigate the influence of disrupted sleep on opioid reward in male mice. The CSS paradigm did not increase corticosterone levels or depressive-like behavior after a single sleep deprivation session but did increase expression of Iba1, which typically reflects microglial activation, in the hypothalamus after 4 weeks of CSS. Rested control mice developed a morphine preference in a 2-bottle choice test, while mice exposed to CSS did not develop a morphine preference. Both groups demonstrated morphine conditioned place preference (mCPP), but there were no differences in conditioned preference between rested and CSS mice. Taken together, our results show that recovery sleep after chronic sleep disruption lessens voluntary opioid intake, without impacting conditioned reward associated with morphine.

7.
Sleep ; 44(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33768250

RESUMO

Chronic short sleep (CSS) is prevalent in modern societies and has been proposed as a risk factor for Alzheimer's disease (AD). In support, short-term sleep loss acutely increases levels of amyloid ß (Aß) and tau in wild type (WT) mice and humans, and sleep disturbances predict cognitive decline in older adults. We have shown that CSS induces injury to and loss of locus coeruleus neurons (LCn), neurons with heightened susceptibility in AD. Yet whether CSS during young adulthood drives lasting Aß and/or tau changes and/or neural injury later in life in the absence of genetic risk for AD has not been established. Here, we examined the impact of CSS exposure in young adult WT mice on late-in-life Aß and tau changes and neural responses in two AD-vulnerable neuronal groups, LCn and hippocampal CA1 neurons. Twelve months following CSS exposure, CSS-exposed mice evidenced reductions in CA1 neuron counts and volume, spatial memory deficits, CA1 glial activation, and loss of LCn. Aß 42 and hyperphosphorylated tau were increased in the CA1; however, amyloid plaques and tau tangles were not observed. Collectively the findings demonstrate that CSS exposure in the young adult mouse imparts late-in-life neurodegeneration and persistent derangements in amyloid and tau homeostasis. These findings occur in the absence of a genetic predisposition to neurodegeneration and demonstrate for the first time that CSS can induce lasting, significant neural injury consistent with some, but not all, features of late-onset AD.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides , Animais , Camundongos , Placa Amiloide , Sono
9.
Neurobiol Dis ; 139: 104820, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32087293

RESUMO

Chronic short sleep or extended wake periods are commonly observed in most industrialized countries. Previously neurobehavioral impairment following sleep loss was considered to be a readily reversible occurrence, normalized upon recovery sleep. Recent clinical studies suggest that chronic short sleep and sleep disruption may be risk factors for neurodegeneration. Animal models have been instrumental in determining whether disturbed sleep can injure the brain. We now understand that repeated periods of extended wakefulness across the typical sleep period and/or sleep fragmentation can have lasting effects on neurogenesis and select populations of neurons and glia. Here we provide a comprehensive overview of the advancements made using animal models of sleep loss to understand the extent and mechanisms of chronic short sleep induced neural injury.


Assuntos
Doenças Neurodegenerativas/complicações , Privação do Sono/complicações , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Sono/fisiologia , Vigília/fisiologia
10.
N Engl J Med ; 381(3): e7, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31314987
12.
J Neurosci ; 38(48): 10255-10270, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30322903

RESUMO

Brainstem locus ceruleus neurons (LCn) are among the first neurons across the lifespan to evidence tau pathology, and LCn are implicated in tau propagation throughout the cortices. Yet, events influencing LCn tau are poorly understood. Activated persistently across wakefulness, LCn experience significant metabolic stress in response to chronic short sleep (CSS). Here we explored whether CSS influences LCn tau and the biochemical, neuroanatomical, and/or behavioral progression of tauopathy in male and female P301S mice. CSS in early adult life advanced the temporal progression of neurobehavioral impairments and resulted in a lasting increase in soluble tau oligomers. Intriguingly, CSS resulted in an early increase in AT8 and MC1 tau pathology in the LC. Over time tau pathology, including tangles, was evident in forebrain tau-vulnerable regions. Sustained microglial and astrocytic activation was observed as well. Remarkably, CSS resulted in significant loss of neurons in the two regions examined: the basolateral amygdala and LC. A second, distinct form of chronic sleep disruption, fragmentation of sleep, during early adult life also increased tau deposition and imparted early neurobehavioral impairment. Collectively, the findings demonstrate that early life sleep disruption has important lasting effects on the temporal progression in P301S mice, influencing tau pathology and hastening neurodegeneration, neuroinflammation, and neurobehavioral impairments.SIGNIFICANCE STATEMENT Chronic short sleep (CSS) is pervasive in modern society. Here, we found that early life CSS influences behavioral, biochemical, and neuroanatomic aspects of the temporal progression of tauopathy in a mouse model of the P301S tau mutation. Specifically, CSS hastened the onset of motor impairment and resulted in a greater loss of neurons in both the locus ceruleus and basolateral/lateral amygdala. Importantly, despite a protracted recovery opportunity after CSS, mice evidenced a sustained increase in pathogenic tau oligomers, and increased pathogenic tau in the locus ceruleus and limbic system nuclei. These findings unveil early life sleep habits as an important determinant in the progression of tauopathy.


Assuntos
Progressão da Doença , Mutação/fisiologia , Privação do Sono/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Feminino , Humanos , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Privação do Sono/genética , Privação do Sono/patologia , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
13.
PLoS One ; 13(5): e0196743, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29746501

RESUMO

BACKGROUND AND AIMS: Associated with numerous metabolic and behavioral abnormalities, obesity is classified by metrics reliant on body weight (such as body mass index). However, overnutrition is the common cause of obesity, and may independently contribute to these obesity-related abnormalities. Here, we use dietary challenges to parse apart the relative influence of diet and/or energy balance from body weight on various metabolic and behavioral outcomes. MATERIALS AND METHODS: Seventy male mice (mus musculus) were subjected to the diet switch feeding paradigm, generating groups with various body weights and energetic imbalances. Spontaneous activity patterns, blood metabolite levels, and unbiased gene expression of the nutrient-sensing ventral hypothalamus (using RNA-sequencing) were measured, and these metrics were compared using standardized multivariate linear regression models. RESULTS: Spontaneous activity patterns were negatively related to body weight (p<0.0001) but not diet/energy balance (p = 0.63). Both body weight and diet/energy balance predicted circulating glucose and insulin levels, while body weight alone predicted plasma leptin levels. Regarding gene expression within the ventral hypothalamus, only two genes responded to diet/energy balance (neuropeptide y [npy] and agouti-related peptide [agrp]), while others were related only to body weight. CONCLUSIONS: Collectively, these results demonstrate that individual components of obesity-specifically obesogenic diets/energy imbalance and elevated body mass-can have independent effects on metabolic and behavioral outcomes. This work highlights the shortcomings of using body mass-based indices to assess metabolic health, and identifies novel associations between blood biomarkers, neural gene expression, and animal behavior following dietary challenges.


Assuntos
Comportamento Animal/fisiologia , Peso Corporal/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Sono/fisiologia , Vigília/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Biomarcadores/sangue , Dieta/métodos , Ingestão de Energia/fisiologia , Expressão Gênica/fisiologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/metabolismo , Obesidade/sangue , Obesidade/metabolismo , Obesidade/fisiopatologia
15.
Sleep Med Rev ; 40: 69-78, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29153862

RESUMO

This review details tumor necrosis factor alpha (TNF) biology and its role in sleep, and describes how TNF medications influence sleep/wake activity. Substantial evidence from healthy young animals indicates acute enhancement or inhibition of endogenous brain TNF respectively promotes and inhibits sleep. In contrast, the role of TNF in sleep in most human studies involves pathological conditions associated with chronic elevations of systemic TNF and disrupted sleep. Normalization of TNF levels in such patients improves sleep. A few studies involving normal healthy humans and their TNF levels and sleep are consistent with the animal studies but are necessarily more limited in scope. TNF can act on established sleep regulatory circuits to promote sleep and on the cortex within small networks, such as cortical columns, to induce sleep-like states. TNF affects multiple synaptic functions, e.g., its role in synaptic scaling is firmly established. The TNF-plasticity actions, like its role in sleep, can be local network events suggesting that sleep and plasticity share biochemical regulatory mechanisms and thus may be inseparable from each other. We conclude that TNF is involved in sleep regulation acting within an extensive tightly orchestrated biochemical network to niche-adapt sleep in health and disease.


Assuntos
Encéfalo/fisiologia , Sono/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Humanos , Plasticidade Neuronal , Fator de Necrose Tumoral alfa/sangue
16.
Front Neurol ; 8: 235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620347

RESUMO

Approximately one-third of adolescents and adults in developed countries regularly experience insufficient sleep across the school and/or work week interspersed with weekend catch up sleep. This common practice of weekend recovery sleep reduces subjective sleepiness, yet recent studies demonstrate that one weekend of recovery sleep may not be sufficient in all persons to fully reverse all neurobehavioral impairments observed with chronic sleep loss, particularly vigilance. Moreover, recent studies in animal models demonstrate persistent injury to and loss of specific neuron types in response to chronic short sleep (CSS) with lasting effects on sleep/wake patterns. Here, we provide a comprehensive review of the effects of chronic sleep disruption on neurobehavioral performance and injury to neurons, astrocytes, microglia, and oligodendrocytes and discuss what is known and what is not yet established for reversibility of neural injury. Recent neurobehavioral findings in humans are integrated with animal model research examining long-term consequences of sleep loss on neurobehavioral performance, brain development, neurogenesis, neurodegeneration, and connectivity. While it is now clear that recovery of vigilance following short sleep requires longer than one weekend, less is known of the impact of CSS on cognitive function, mood, and brain health long term. From work performed in animal models, CSS in the young adult and short-term sleep loss in critical developmental windows can have lasting detrimental effects on neurobehavioral performance.

18.
J Clin Invest ; 127(5): 1889-1904, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28394263

RESUMO

Mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome (RTT), a neurological disorder affecting cognitive development, respiration, and motor function. Genetic restoration of MeCP2 expression reverses RTT-like phenotypes in mice, highlighting the need to search for therapeutic approaches. Here, we have developed knockin mice recapitulating the most common RTT-associated missense mutation, MeCP2 T158M. We found that the T158M mutation impaired MECP2 binding to methylated DNA and destabilized MeCP2 protein in an age-dependent manner, leading to the development of RTT-like phenotypes in these mice. Genetic elevation of MeCP2 T158M expression ameliorated multiple RTT-like features, including motor dysfunction and breathing irregularities, in both male and female mice. These improvements were accompanied by increased binding of MeCP2 T158M to DNA. Further, we found that the ubiquitin/proteasome pathway was responsible for MeCP2 T158M degradation and that proteasome inhibition increased MeCP2 T158M levels. Together, these findings demonstrate that increasing MeCP2 T158M protein expression is sufficient to mitigate RTT-like phenotypes and support the targeting of MeCP2 T158M expression or stability as an alternative therapeutic approach.


Assuntos
Regulação da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG , Mutação de Sentido Incorreto , Proteólise , Síndrome de Rett , Substituição de Aminoácidos , Animais , Humanos , Proteína 2 de Ligação a Metil-CpG/biossíntese , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Ubiquitina/genética , Ubiquitina/metabolismo
19.
Sleep ; 39(8): 1601-11, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27306266

RESUMO

STUDY OBJECTIVES: Intermittent short sleep (ISS) is pervasive among students and workers in modern societies, yet the lasting consequences of repeated short sleep on behavior and brain health are largely unexplored. Wake-activated neurons may be at increased risk of metabolic injury across sustained wakefulness. METHODS: To examine the effects of ISS on wake-activated neurons and wake behavior, wild-type mice were randomized to ISS (a repeated pattern of short sleep on 3 consecutive days followed by 4 days of recovery sleep for 4 weeks) or rested control conditions. Subsets of both groups were allowed a recovery period consisting of 4-week unperturbed activity in home cages with littermates. Mice were examined for immediate and delayed (following recovery) effects of ISS on wake neuron cell metabolics, cell counts, and sleep/wake patterns. RESULTS: ISS resulted in sustained disruption of sleep/wake activity, with increased wakefulness during the lights-on period and reduced wake bout duration and wake time during the lights-off period. Noradrenergic locus coeruleus (LC) and orexinergic neurons showed persistent alterations in morphology, and reductions in both neuronal stereological cell counts and fronto-cortical projections. Surviving wake-activated neurons evidenced persistent reductions in sirtuins 1 and 3 and increased lipofuscin. In contrast, ISS resulted in no lasting injury to the sleep-activated melanin concentrating hormone neurons. CONCLUSIONS: Collectively these findings demonstrate for the first time that ISS imparts significant lasting disturbances in sleep/wake activity, degeneration of wake-activated LC and orexinergic neurons, and lasting metabolic changes in remaining neurons most consistent with premature senescence.


Assuntos
Locus Cerúleo/patologia , Neurônios/metabolismo , Neurônios/patologia , Orexinas/metabolismo , Transtornos do Sono-Vigília/fisiopatologia , Envelhecimento/metabolismo , Animais , Contagem de Células , Escuridão , Luz , Lipofuscina/metabolismo , Locus Cerúleo/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos da radiação , Norepinefrina/metabolismo , Distribuição Aleatória , Sirtuínas/metabolismo , Sono/fisiologia , Sono/efeitos da radiação , Vigília/fisiologia , Vigília/efeitos da radiação
20.
Sleep ; 38(12): 1893-903, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26158893

RESUMO

STUDY OBJECTIVES: Excessive daytime sleepiness commonly affects obese people, even in those without sleep apnea, yet its causes remain uncertain. We sought to determine whether acute dietary changes could induce or rescue wake impairments independent of body weight. DESIGN: We implemented a novel feeding paradigm that generates two groups of mice with equal body weight but opposing energetic balance. Two subsets of mice consuming either regular chow (RC) or high-fat diet (HFD) for 8 w were switched to the opposite diet for 1 w. Sleep recordings were conducted at Week 0 (baseline), Week 8 (pre-diet switch), and Week 9 (post-diet switch) for all groups. Sleep homeostasis was measured at Week 8 and Week 9. PARTICIPANTS: Young adult, male C57BL/6J mice. MEASUREMENTS AND RESULTS: Differences in total wake, nonrapid eye movement (NREM), and rapid eye movement (REM) time were quantified, in addition to changes in bout fragmentation/consolidation. At Week 9, the two diet switch groups had similar body weight. However, animals switched to HFD (and thus gaining weight) had decreased wake time, increased NREM sleep time, and worsened sleep/wake fragmentation compared to mice switched to RC (which were in weight loss). These effects were driven by significant sleep/wake changes induced by acute dietary manipulations (Week 8 → Week 9). Sleep homeostasis, as measured by delta power increase following sleep deprivation, was unaffected by our feeding paradigm. CONCLUSIONS: Acute dietary manipulations are sufficient to alter sleep and wakefulness independent of body weight and without effects on sleep homeostasis.


Assuntos
Peso Corporal , Dieta Hiperlipídica , Metabolismo Energético/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Privação do Sono/fisiopatologia , Sono REM/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...