Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 7(10): 2920-2927, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36162130

RESUMO

Biosensors based on Förster resonance energy transfer (FRET) have revolutionized cellular biology by allowing the direct measurement of biochemical processes in situ. Many genetically encoded sensors make use of fluorescent proteins that are limited in spectral versatility and that allow few ways to change the spectral properties once the construct has been created. In this work, we developed genetically encoded FRET biosensors based on the chemigenetic SNAP and HaloTag domains combined with matching organic fluorophores. We found that the resulting constructs can display comparable responses, kinetics, and reversibility compared to their fluorescent protein-based ancestors, but with the added advantage of spectral versatility, including the availability of red-shifted dye pairs. However, we also find that the introduction of these tags can alter the sensor readout, showing that careful validation is required before applying such constructs in practice. Overall, our approach delivers an innovative methodology that can readily expand the spectral variety and versatility of FRET-based biosensors.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...