Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850940

RESUMO

Industrial assets often feature multiple sensing devices to keep track of their status by monitoring certain physical parameters. These readings can be analyzed with machine learning (ML) tools to identify potential failures through anomaly detection, allowing operators to take appropriate corrective actions. Typically, these analyses are conducted on servers located in data centers or the cloud. However, this approach increases system complexity and is susceptible to failure in cases where connectivity is unavailable. Furthermore, this communication restriction limits the approach's applicability in extreme industrial environments where operating conditions affect communication and access to the system. This paper proposes and evaluates an end-to-end adaptable and configurable anomaly detection system that uses the Internet of Things (IoT), edge computing, and Tiny-MLOps methodologies in an extreme industrial environment such as submersible pumps. The system runs on an IoT sensing Kit, based on an ESP32 microcontroller and MicroPython firmware, located near the data source. The processing pipeline on the sensing device collects data, trains an anomaly detection model, and alerts an external gateway in the event of an anomaly. The anomaly detection model uses the isolation forest algorithm, which can be trained on the microcontroller in just 1.2 to 6.4 s and detect an anomaly in less than 16 milliseconds with an ensemble of 50 trees and 80 KB of RAM. Additionally, the system employs blockchain technology to provide a transparent and irrefutable repository of anomalies.

2.
Sensors (Basel) ; 22(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501820

RESUMO

The data economy is based on data and information sharing and tremendously impacts society as it facilitates innovative collaborations and decision-making strategies. Nonetheless, most dataset-sharing solutions rely on a centralized authority that rules data ownership, availability, and accessibility. Recent works have explored the integration of distributed storage and blockchain to enhance decentralization, data access, and smart contracts for automating the interactions between actors and data. However, current solutions propose a smart contract design limiting the system's scalability in terms of actors and shared datasets. Furthermore, little is known about the performance of these architectures when using distributed storage instead of centralized storage approaches. This paper proposes a scalable architecture called DeBlock for data sharing in a trusted way among unreliable actors. The architecture integrates a public blockchain that provides a transparent record of datasets and interactions, with a distributed storage for data storage in a completely decentralized way. Furthermore, the architecture provides a smart-contract design for a transparent catalog of datasets, actors, and interactions with efficient search and retrieval capabilities. To assess the system's feasibility, robustness, and scalability, we implement a prototype using the Ethereum blockchain and leveraging two decentralized storage protocols, Swarm and IPFS. We evaluate the performance of our proposed system in different scenarios (e.g., varying the amount and size of the shared datasets). Our results demonstrate that our proposal outperforms benchmarks in gas consumption, latency, and resource requirements, especially when increasing the number of actors and shared datasets.


Assuntos
Blockchain , Confiança , Benchmarking , Processos Grupais , Disseminação de Informação
3.
Sensors (Basel) ; 22(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161645

RESUMO

Inspection of mining assets is a crucial part of the maintenance process and is of interest to several stakeholders (e.g., OEMs, owners, users, and inspectors). Inspections require an inspector to verify several characteristics of the assets onsite, typically using legacy and poorly digitized procedures. Thus, many research opportunities arise from the adoption of digital technologies to make these procedures more efficient, reliable, and straightforward. In addition to cloud computing, the ubiquitous presence of modern mobile devices, new measurement tools with embedded connectivity capabilities, and blockchain technologies could greatly improve trust and transparency between the stakeholders interested in the inspection. However, there has been little discussion on integrating these technologies into the mining domain. This paper presents and evaluates an end-to-end system to conduct inspections using mobile devices that directly interact with constrained IoT sensor devices. Furthermore, our proposal provides a method to integrate constrained IoT devices as smart measuring tools that directly interact with a blockchain system, guaranteeing data integrity and increasing the trustworthiness of the data. Finally, we highlight the benefits of our proposed architecture by evaluating a real case study in a mining inspection scenario.


Assuntos
Blockchain , Computação em Nuvem , Tecnologia
4.
Sensors (Basel) ; 21(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205904

RESUMO

Agriculture faces critical challenges caused by changing climatic factors and weather patterns with random distribution. This has increased the need for accurate local weather predictions and weather data collection to support precision agriculture. The demand for uninterrupted weather stations is overwhelming, and the Internet of Things (IoT) has the potential to address this demand. One major challenge of energy constraint in remotely deployed IoT devices can be resolved using weather stations that are energy neutral. This paper focuses on optimizing the energy consumption of a weather station by optimizing the data collected and sent from the sensor deployed in remote locations. An asynchronous optimization algorithm for wind data collection has been successfully developed, using the development lifecyle specifically designed for weather stations and focused on achieving energy neutrality. The developed IoT weather station was deployed in the field, and it has the potential to reduce the power consumption of the weather station by more than 60%.

5.
Sensors (Basel) ; 21(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673065

RESUMO

In this paper, we describe the main outcomes of AGILE (acronym for "Adaptive Gateways for dIverse muLtiple Environments"), an EU-funded project that recently delivered a modular hardware and software framework conceived to address the fragmented market of embedded, multi-service, adaptive gateways for the Internet of Things (IoT). Its main goal is to provide a low-cost solution capable of supporting proof-of-concept implementations and rapid prototyping methodologies for both consumer and industrial IoT markets. AGILE allows developers to implement and deliver a complete (software and hardware) IoT solution for managing non-IP IoT devices through a multi-service gateway. Moreover, it simplifies the access of startups to the IoT market, not only providing an efficient and cost-effective solution for industries but also allowing end-users to customize and extend it according to their specific requirements. This flexibility is the result of the joint experience of established organizations in the project consortium already promoting the principles of openness, both at the software and hardware levels. We illustrate how the AGILE framework can provide a cost-effective yet solid and highly customizable, technological foundation supporting the configuration, deployment, and assessment of two distinct showcases, namely a quantified self application for individual consumers, and an air pollution monitoring station for industrial settings.

6.
Sensors (Basel) ; 20(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188135

RESUMO

Within the Internet of Things (IoT) and blockchain research, there is a growing interest in decentralizing health monitoring systems, to provide improved privacy to patients, without relying on trusted third parties for handling patients' sensitive health data. With public blockchain deployments being severely limited in their scalability, and inherently having latency in transaction processing, there is room for researching and developing new techniques to leverage the security features of blockchains within healthcare applications. This paper presents a solution for patients to share their biomedical data with their doctors without their data being handled by trusted third party entities. The solution is built on the Ethereum blockchain as a medium for negotiating and record-keeping, along with Tor for delivering data from patients to doctors. To highlight the applicability of the solution in various health monitoring scenarios, we have considered three use-cases, namely cardiac monitoring, sleep apnoea testing, and EEG following epileptic seizures. Following the discussion about the use cases, the paper outlines a security analysis performed on the proposed solution, based on multiple attack scenarios. Finally, the paper presents and discusses a performance evaluation in terms of data delivery time in comparison to existing centralized and decentralized solutions.


Assuntos
Segurança Computacional/tendências , Atenção à Saúde/tendências , Monitorização Fisiológica/tendências , Tecnologia de Sensoriamento Remoto , Blockchain , Humanos , Internet das Coisas , Privacidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...