Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2441: 77-83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099729

RESUMO

Understanding the development of the lymphatic vasculature is essential to the understanding of how these vessels function in health and disease. High-resolution imaging of histological techniques such as immunostaining of sectioned tissue provides a snapshot into lymphatic vessel morphogenesis, patterning, and organization. Whole-mount staining of embryonic dermal vasculature allows for a deeper analysis and characterization of the developing lymphatic vascular network.


Assuntos
Vasos Linfáticos , Pele , Animais , Sistema Linfático , Camundongos , Morfogênese , Pele/irrigação sanguínea , Coloração e Rotulagem
2.
Cells ; 10(10)2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34685572

RESUMO

Recent advances in our understanding of the lymphatic system, its function, development, and role in pathophysiology have changed our views on its importance. Historically thought to be solely involved in the transport of tissue fluid, lipids, and immune cells, the lymphatic system displays great heterogeneity and plasticity and is actively involved in immune cell regulation. Interference in any of these processes can be deleterious, both at the developmental and adult level. Preclinical studies into the cardiac lymphatic system have shown that invoking lymphangiogenesis and enhancing immune cell trafficking in ischaemic hearts can reduce myocardial oedema, reduce inflammation, and improve cardiac outcome. Understanding how immune cells and the lymphatic endothelium interact is also vital to understanding how the lymphatic vascular network can be manipulated to improve immune cell clearance. In this Review, we examine the different types of immune cells involved in fibrotic repair following myocardial infarction. We also discuss the development and function of the cardiac lymphatic vasculature and how some immune cells interact with the lymphatic endothelium in the heart. Finally, we establish how promoting lymphangiogenesis is now a prime therapeutic target for reducing immune cell persistence, inflammation, and oedema to restore heart function in ischaemic heart disease.


Assuntos
Doenças Cardiovasculares/imunologia , Sistema Linfático/imunologia , Humanos
3.
Nat Commun ; 12(1): 3447, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103494

RESUMO

Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.


Assuntos
Sistema Cardiovascular/embriologia , Embrião de Mamíferos/patologia , Deficiências de Ferro , Animais , Aorta Torácica/anormalidades , Biomarcadores/metabolismo , Diferenciação Celular , Vasos Coronários/embriologia , Vasos Coronários/patologia , Suplementos Nutricionais , Edema/patologia , Embrião de Mamíferos/anormalidades , Desenvolvimento Embrionário , Feminino , Perfilação da Expressão Gênica , Interação Gene-Ambiente , Proteínas de Fluorescência Verde/metabolismo , Ferro/metabolismo , Vasos Linfáticos/embriologia , Vasos Linfáticos/patologia , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Penetrância , Fenótipo , Gravidez , Transdução de Sinais , Células-Tronco/patologia , Transgenes , Tretinoína/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-31548181

RESUMO

Congenital heart disease (CHD) has many forms and a wide range of causes. Clinically, it is important to understand the causes. This allows estimation of recurrence rate, guides treatment options, and may also be used to formulate public health advice to reduce the population prevalence of CHD. The recent advent of sophisticated genetic and genomic methods has led to the identification of more than 100 genes associated with CHD. However, despite these great strides, to date only one-third of CHD cases have been shown to have a simple genetic cause. This is because CHD can also be caused by oligogenic factors, environmental factors, and/or gene-environment interaction. Although solid evidence for environmental causes of CHD have been available for almost 80 years, it is only very recently that the molecular mechanisms for these risk factors have begun to be investigated. In this review, we describe the most important environmental CHD risk factors, and what is known about how they cause CHD.


Assuntos
Cardiopatias Congênitas/etiologia , Consumo de Bebidas Alcoólicas , Animais , Diabetes Mellitus/tratamento farmacológico , Exposição Ambiental , Interação Gene-Ambiente , Genômica , Coração/embriologia , Humanos , Hipertermia , Hipóxia , Obesidade/tratamento farmacológico , Fenilcetonúrias/tratamento farmacológico , Prevalência , Fatores de Risco , Talidomida , Tretinoína/efeitos adversos , Vitamina A/efeitos adversos
5.
Lab Anim ; 53(6): 630-633, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31248325

RESUMO

Since it was introduced 20 years ago, tamoxifen-inducible genetic recombination in vivo has become a standard tool in many fields. This technique has great utility, allowing precise temporal and spatial gene recombination mediated by expression of a Cre recombinase-oestrogen receptor hormone binding domain fusion protein. It is frequently used in developmental biology, either for accurate spatio-temporal gene deletion or for lineage-labelling. Administration of high doses of tamoxifen can rapidly induce abortion in pregnant mice but this can be partially overcome by progesterone co-administration. However, administration of tamoxifen to pregnant mice early in pregnancy may have potentially lethal effects on the mother independently of abortion, and can also severely perturb embryonic development. Despite this, only a few published studies mention this fact in passing, and standard parameters for successful or unsuccessful use of tamoxifen in pregnant mice have not been reported. Therefore, in the interests of providing a framework for more humane animal research, we describe our experiences of tamoxifen administration during early gestation in mice. These observations should assist the design of future studies in accordance with the principles of the three Rs (Replacement, Reduction and Refinement of Animals in Research).


Assuntos
Embrião de Mamíferos/efeitos dos fármacos , Camundongos/fisiologia , Moduladores Seletivos de Receptor Estrogênico/efeitos adversos , Tamoxifeno/efeitos adversos , Animais , Embrião de Mamíferos/fisiologia , Feminino , Gravidez
6.
Compr Physiol ; 8(3): 955-979, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29978898

RESUMO

The vascular endothelial growth factor (VEGF) family of proteins are key regulators of physiological systems. Originally linked with endothelial function, they have since become understood to be principal regulators of multiple tissues, both through their actions on vascular cells, but also through direct actions on other tissue types, including epithelial cells, neurons, and the immune system. The complexity of the five members of the gene family in terms of their different splice isoforms, differential translation, and specific localizations have enabled tissues to use these potent signaling molecules to control how they function to maintain their environment. This homeostatic function of VEGFs has been less intensely studied than their involvement in disease processes, development, and reproduction, but they still play a substantial and significant role in healthy control of blood volume and pressure, interstitial volume and drainage, renal and lung function, immunity, and signal processing in the peripheral and central nervous system. The widespread expression of VEGFs in healthy adult tissues, and the disturbances seen when VEGF signaling is inhibited support this view of the proteins as endogenous regulators of normal physiological function. This review summarizes the evidence and recent breakthroughs in understanding of the physiology that is regulated by VEGF, with emphasis on the role they play in maintaining homeostasis. © 2017 American Physiological Society. Compr Physiol 8:955-979, 2018.


Assuntos
Homeostase/fisiologia , Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Humanos , Splicing de RNA , Fatores de Crescimento do Endotélio Vascular/genética
7.
J Cell Sci ; 131(14)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29930087

RESUMO

Many potential causes for painful diabetic neuropathy have been proposed including actions of cytokines and growth factors. High mobility group protein B1 (HMGB1) is a RAGE (also known as AGER) agonist whose levels are increased in diabetes and that contributes to pain by modulating peripheral inflammatory responses. HMGB1 enhances nociceptive behaviour in naïve animals through an unknown mechanism. We tested the hypothesis that HMGB1 causes pain through direct neuronal activation of RAGE and alteration of nociceptive neuronal responsiveness. HMGB1 and RAGE expression were increased in skin and primary sensory (dorsal root ganglion, DRG) neurons of diabetic rats at times when pain behaviour was enhanced. Agonist-evoked TRPV1-mediated Ca2+ responses increased in cultured DRG neurons from diabetic rats and in neurons from naïve rats exposed to high glucose concentrations. HMGB1-mediated increases in TRPV1-evoked Ca2+ responses in DRG neurons were RAGE- and PKC-dependent, and this was blocked by co-administration of the growth factor splice variant VEGF-A165b. Pain behaviour and the DRG RAGE expression increases were blocked by VEGF-A165b treatment of diabetic rats in vivo Hence, we conclude that HMGB1-RAGE activation sensitises DRG neurons in vitro, and that VEGF-A165b blocks HMGB-1-RAGE DRG activation, which may contribute to its analgesic properties in vivo.


Assuntos
Neuropatias Diabéticas/metabolismo , Glucose/metabolismo , Proteína HMGB1/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Neuropatias Diabéticas/genética , Feminino , Gânglios Espinais/metabolismo , Proteína HMGB1/genética , Humanos , Masculino , Nociceptores/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/genética , Canais de Cátion TRPV/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Clin Sci (Lond) ; 131(12): 1225-1243, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341661

RESUMO

Diabetic retinopathy (DR) is one of the leading causes of blindness in the developed world. Characteristic features of DR are retinal neurodegeneration, pathological angiogenesis and breakdown of both the inner and outer retinal barriers of the retinal vasculature and retinal pigmented epithelial (RPE)-choroid respectively. Vascular endothelial growth factor (VEGF-A), a key regulator of angiogenesis and permeability, is the target of most pharmacological interventions of DR. VEGF-A can be alternatively spliced at exon 8 to form two families of isoforms, pro- and anti-angiogenic. VEGF-A165a is the most abundant pro-angiogenic isoform, is pro-inflammatory and a potent inducer of permeability. VEGF-A165b is anti-angiogenic, anti-inflammatory, cytoprotective and neuroprotective. In the diabetic eye, pro-angiogenic VEGF-A isoforms are up-regulated such that they overpower VEGF-A165b. We hypothesized that this imbalance may contribute to increased breakdown of the retinal barriers and by redressing this imbalance, the pathological angiogenesis, fluid extravasation and retinal neurodegeneration could be ameliorated. VEGF-A165b prevented VEGF-A165a and hyperglycaemia-induced tight junction (TJ) breakdown and subsequent increase in solute flux in RPE cells. In streptozotocin (STZ)-induced diabetes, there was an increase in Evans Blue extravasation after both 1 and 8 weeks of diabetes, which was reduced upon intravitreal and systemic delivery of recombinant human (rh)VEGF-A165b. Eight-week diabetic rats also showed an increase in retinal vessel density, which was prevented by VEGF-A165b. These results show rhVEGF-A165b reduces DR-associated blood-retina barrier (BRB) dysfunction, angiogenesis and neurodegeneration and may be a suitable therapeutic in treating DR.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Barreira Hematorretiniana/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Neovascularização Retiniana/prevenção & controle , Epitélio Pigmentado da Retina/efeitos dos fármacos , Vasos Retinianos/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Glicemia/metabolismo , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Células Cultivadas , Citoproteção , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/sangue , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Injeções Intravítreas , Degeneração Neural , Permeabilidade , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Neovascularização Retiniana/sangue , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Fatores de Tempo
9.
Clin Sci (Lond) ; 129(8): 741-56, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26201024

RESUMO

Diabetic peripheral neuropathy affects up to half of diabetic patients. This neuronal damage leads to sensory disturbances, including allodynia and hyperalgesia. Many growth factors have been suggested as useful treatments for prevention of neurodegeneration, including the vascular endothelial growth factor (VEGF) family. VEGF-A is generated as two alternative splice variant families. The most widely studied isoform, VEGF-A165a is both pro-angiogenic and neuroprotective, but pro-nociceptive and increases vascular permeability in animal models. Streptozotocin (STZ)-induced diabetic rats develop both hyperglycaemia and many of the resulting diabetic complications seen in patients, including peripheral neuropathy. In the present study, we show that the anti-angiogenic VEGF-A splice variant, VEGF-A165b, is also a potential therapeutic for diabetic neuropathy. Seven weeks of VEGF-A165b treatment in diabetic rats reversed enhanced pain behaviour in multiple behavioural paradigms and was neuroprotective, reducing hyperglycaemia-induced activated caspase 3 (AC3) levels in sensory neuronal subsets, epidermal sensory nerve fibre loss and aberrant sciatic nerve morphology. Furthermore, VEGF-A165b inhibited a STZ-induced increase in Evans Blue extravasation in dorsal root ganglia (DRG), saphenous nerve and plantar skin of the hind paw. Increased transient receptor potential ankyrin 1 (TRPA1) channel activity is associated with the onset of diabetic neuropathy. VEGF-A165b also prevented hyperglycaemia-enhanced TRPA1 activity in an in vitro sensory neuronal cell line indicating a novel direct neuronal mechanism that could underlie the anti-nociceptive effect observed in vivo. These results demonstrate that in a model of Type I diabetes VEGF-A165b attenuates altered pain behaviour and prevents neuronal stress, possibly through an effect on TRPA1 activity.


Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/prevenção & controle , Degeneração Neural/prevenção & controle , Neuralgia/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Linhagem Celular , Neuropatias Diabéticas/etiologia , Avaliação Pré-Clínica de Medicamentos , Azul Evans , Feminino , Gânglios Espinais/efeitos dos fármacos , Hiperglicemia/complicações , Masculino , Ratos Sprague-Dawley , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Canal de Cátion TRPA1 , Canais de Cátion TRPC/análise , Fator A de Crescimento do Endotélio Vascular/farmacologia
10.
Eur J Neurosci ; 35(9): 1433-45, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22487171

RESUMO

The olfactory bulb differs from other brain regions by its use of bidirectional synaptic transmission at dendrodendritic reciprocal synapses. These reciprocal synapses provide tight coupling of inhibitory feedback from granule cell interneurons to mitral cell projection neurons in the accessory olfactory bulb (AOB), at the first stage of vomeronasal processing. It has been proposed that both the mGluR2 agonist DCG-IV and noradrenaline promote mate recognition memory formation by reducing GABAergic feedback on mitral cells. The resultant mitral cell disinhibition is thought to induce a long-lasting enhancement in the gain of inhibitory feedback from granule to mitral cells, which selectively gates the transmission of the learned chemosensory information. However, we found that local infusions of both noradrenaline and DCG-IV failed to disinhibit AOB neural activity in urethane-anaesthetised mice. DCG-IV infusion had similar effects to the GABA(A) agonist isoguvacine, suggesting that it increased GABAergic inhibition in the AOB rather than reducing it. Noradrenaline infusion into the AOB also failed to disinhibit mitral cells in awake mice despite inducing long-term increases in power of AOB local field potentials, similar to those observed following memory formation. These results suggest that mitral cell disinhibition is not essential for the neural changes in the AOB that underlie mate recognition memory formation in mice.


Assuntos
Ondas Encefálicas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Norepinefrina/farmacologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Anestésicos Intravenosos , Animais , Ciclopropanos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Agonistas GABAérgicos/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Ácidos Isonicotínicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Microdiálise , Uretana/farmacologia , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...