Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(22): e202403900, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38459961

RESUMO

Maintaining lipid asymmetry across membrane leaflets is critical for functions like vesicular traffic and organelle homeostasis. However, a lack of molecular-level understanding of the mechanisms underlying membrane fission and fusion processes in synthetic systems precludes their development as artificial analogs. Here, we report asymmetry induction of a bilayer membrane formed by an extended π-conjugated molecule with oxyalkylene side chains bearing terminal tertiary amine moieties (BA1) in water. Autogenous protonation of the tertiary amines in the periphery of the bilayer by water induces anisotropic curvature, resulting in membrane fission to form vesicles and can be monitored using time-dependent spectroscopy and microscopy. Interestingly, upon loss of the induced asymmetry by extensive protonation using an organic acid restored bilayer membrane. The mechanism leading to the compositional asymmetry in the leaflet and curvature induction in the membrane is validated by density functional theory (DFT) calculations. Studies extended to control molecules having changes in hydrophilic (BA2) and hydrophobic (BA3) segments provide insight into the delicate nature of molecular scale interactions in the dynamic transformation of supramolecular structures. The synergic effect of hydrophobic interaction and the hydrated state of BA1 aggregates provide dynamicity and unusual stability. Our study unveils mechanistic insight into the dynamic transformation of bilayer membranes into vesicles.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Teoria da Densidade Funcional , Interações Hidrofóbicas e Hidrofílicas , Aminas/química , Estrutura Molecular , Água/química
2.
Small ; 20(6): e2306175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771173

RESUMO

A mechanistic understanding of the principles governing the hierarchical organization of supramolecular polymers offers a paradigm for tailoring synthetic molecular architectures at the nano to micrometric scales. Herein, the unconventional crystal growth mechanism of a supramolecular polymer of superbenzene(coronene)-diphenylalanine conjugate (Cr-FFOEt ) is demonstrated. 3D electron diffraction (3D ED), a technique underexplored in supramolecular chemistry, is effectively utilized to gain a molecular-level understanding of the gradual growth of the initially formed poorly crystalline hairy, fibril-like supramolecular polymers into the ribbon-like crystallites. The further evolution of these nanosized flat ribbons into microcrystals by oriented attachment and lateral fusion is probed by time-resolved microscopy and electron diffraction. The gradual morphological and structural changes reveal the nonclassical crystal growth pathway, where the balance of strong and weak intermolecular interactions led to a structure beyond the nanoscale. The role of distinct π-stacking and H-bonding interactions that drive the nonclassical crystallization process of Cr-FFOEt supramolecular polymers is analyzed in comparison to analogous molecules, Py-FFOEt and Cr-FF forming helical and twisted fibers, respectively. Furthermore, the Cr-FFOEt crystals formed through nonclassical crystallization are found to improve the functional properties.

3.
Chemistry ; 29(58): e202301819, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37498316

RESUMO

One of the bottlenecks associated with supramolecular polymerization of functional π-systems is the spontaneous assembly of monomers leading to one- or two-dimensional (1D or 2D) polymers without control over chain length and optical properties. In the case of supramolecular copolymerization of monomers that are structurally too diverse, preferential self-sorting occurs unless they are closely interacting donor-acceptor pairs. Herein, it is established that the spontaneous 1D polymerization of a phenyleneethynylene (PE) derivative and the 2D polymerization of a Bodipy derivative (BODIPY) can be controlled by copolymerizing them in different ratios, leading to unusual spindle-shaped structures with controlled aspect ratio, as evident by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) studies. For example, when the content of BODIPY is 50 % in the BODIPY-PE mixture, the 1D polymerization of PE is significantly restricted to form elongated spindle-like structures having an aspect ratio of 4-6. The addition of 75 % of BODIPY to PE resulted in circular spindles having an aspect ratio of 1-2.5, thereby completely restricting the 1D polymerization of PE monomers. Moreover, the resultant supramolecular copolymers exhibited morphology and aspect ratio dependent emission features as observed by the time-resolved emission studies.

4.
Nanomaterials (Basel) ; 13(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37049350

RESUMO

Supercapacitors are candidates with the greatest potential for use in sustainable energy resources. Extensive research is being carried out to improve the performances of state-of-art supercapacitors to meet our increased energy demands because of huge technological innovations in various fields. The development of high-performing materials for supercapacitor components such as electrodes, electrolytes, current collectors, and separators is inevitable. To boost research in materials design and production toward supercapacitors, the up-to-date collection of recent advancements is necessary for the benefit of active researchers. This review summarizes the most recent developments of water-in-salt (WIS) and deep eutectic solvents (DES), which are considered significant electrolyte systems to advance the energy density of supercapacitors, with a focus on two-dimensional layered nanomaterials. It provides a comprehensive survey of 2D materials (graphene, MXenes, and transition-metal oxides/dichalcogenides/sulfides) employed in supercapacitors using WIS/DES electrolytes. The synthesis and characterization of various 2D materials along with their electrochemical performances in WIS and DES electrolyte systems are described. In addition, the challenges and opportunities for the next-generation supercapacitor devices are summarily discussed.

5.
J Colloid Interface Sci ; 629(Pt B): 166-178, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152574

RESUMO

In this work, a novel acetamide-based deep eutectic solvent (DES) with Zn2+/ Li+ dual ions is designed and its physicochemical properties are tuned by adjusting the co-solvents (water and acetonitrile). Furthermore, the interplay between electrolyte components is investigated by spectroscopic analyses and molecular dynamics calculations. The addition of acetonitrile facilitates the formation of solid electrolyte interphase (SEI) with organic/inorganic components on the zinc anode. The presence of SEI coating enhances Coulombic efficiency and cycling stability by inhibiting the parasitic reactions and dendrite formation in the anode. The advantages of using dual cations in DES are demonstrated by assembling Zn ion batteries (ZIB) with the composite of δ-MnO2 and reduced graphene oxide as the cathode. The study of electrode kinetics in hybrid DES electrolytes suggests that Zn2+ and Li+ ions are responsible for battery-like and pseudocapacitive behavior of δ-MnO2 electrodes, respectively. With these merits, ZIB with the cutoff voltage of 2 V delivers a high cell capacity of 208 mAh g-1 at 0.1 Ag-1 and achieves 91% capacity retention after 1500 cycles at 2 Ag-1. More importantly, ZIB with hybrid DES is stably operated at the temperature of -20 °C, which is impossibly achieved by ZIB with conventional aqueous electrolytes.

6.
J Colloid Interface Sci ; 619: 123-131, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35378474

RESUMO

High-performance aqueous all-organic rechargeable batteries are promising candidates for cost-effective, safe, and environment-friendly next-generation energy storage devices. Herein, two organic copolymers with nanorod-like morphology (AN-TA, and AN-PA), composed of different tertiary amines, are synthesized as the cathode material for an aqueous proton battery. The individual copolymer electrodes possess the dominated diffusion-controlled electrode kinetics resulting from the proton insertion/de-insertion along with the surface-controlled processes in 2 M HCl and 2 M H2SO4. Among the two copolymers, AN-PA exhibits the maximum specific capacity of 145 mAh g-1 at 1 A g-1 and then, even at the higher current density of 10 A g-1, it possesses the capacity as 110 mAh g-1 in 2 M HCl. The assembled aqueous proton battery comprising of AN-PA as a cathode delivers the capacity of 80 mAh g-1 at 1 A g-1 in 2 M HCl. The maximum deliverable energy density of 33.9 Wh kg-1 is achieved at the power density of 423 W kg-1. Notably, our proton battery can well operate at the sub-zero temperature of -25 °C with a cell voltage of 1.1 V. More importantly, the device retains 84 % of the initial capacity after 1000 cycles at 2 A g-1 and exhibits the retention of specific capacity of about > 93% when compared to that of room temperature.

7.
J Colloid Interface Sci ; 612: 76-87, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979412

RESUMO

Developing battery-supercapacitor hybrid devices (BSHs) is viewed as an efficient route to shorten the gap between supercapacitors and batteries. In this study, a composite hydrogel consisting of perylene tetracarboxylic diimide (PTCDI) and reduced graphene oxide (rGO) is tested as the anode for BSHs in the electrolyte of ammonium acetate (NH4Ac) with a record concentration of 32 molality (m). This water-in-salt electrolyte exhibits a wide electrochemical stability window of 2.13 V and high conductivity of 23.3 mS cm-1 even at -12 °C. Molecular dynamics calculations and spectroscopic measurements reveal that a favorable water-acetate interaction occurs in a high concentration NH4Ac electrolyte. On the other hand, the study of electrode kinetics in 32 m NH4Ac demonstrates a high capacitive contribution to charge storage in PTCDI-rGO although an electrode redox reaction involves reversible enolization of carbonyl groups in PTCDI. This result suggests fast NH4+-ion intercalation kinetics in charge-discharge processes. Furthermore, the electrode performance is improved by optimizing the loading amount of rGO in composites. The best-performing composite electrode delivers the maximum capacity of 165 mAh g-1 at 0.5 A g-1 and sustains a great capacity retention of 66% at 8 A g-1. Finally, an all-organic BSH device is tested in a broad temperature window from -20 to 50 °C and is well operated at 1.9 V regardless of operating temperatures. Due to the synergetic effect of splendid electrolyte properties and high anode capacities, BSH devices possess the maximum energy density of 12.9 Wh kg-1 at the power density of 827 W kg-1 and retain 74 % of the initial capacity after 3000 cycles at 1 A g-1. Our study paves a novel route towards designing inexpensive and environmentally friendly BSH devices with high performances.


Assuntos
Fontes de Energia Elétrica , Água , Eletrodos , Eletrólitos , Temperatura
8.
Chem Rec ; 22(2): e202100252, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34669237

RESUMO

Unique relationships between hierarchically organized biological nanostructures and functions have motivated chemists to construct sophisticated artificial nanostructured systems from small and simple synthetic molecules through self-assembly. As one of such sophisticated systems, we have investigated scissor-shaped photochromic dyads that can hierarchically self-assemble into discrete nanostructures showing photoresponsive properties. We synthesized various azobenzene dyads and found that these dyads adopt intramolecularly folded conformation like a closed scissor, and then self-assemble into toroidal nanostructures by generating curvature. The toroids further organize into nanotubes and further into helical supramolecular fibers depending on the nature of alkyl substituents. All of these nanostructures can be dissociated and reorganized through the photoisomerization of azobenzene units. On the other hand, the introduction of stilbene chromophores instead of azobenzenes leads to one-dimensional supramolecular polymerization, which upon the intramolecular photocyclization of stilbene chromophores shifts to curved self-assembly leading to helicoidal fibers with distinct supramolecular chirality.


Assuntos
Nanoestruturas , Conformação Molecular , Nanoestruturas/química , Polimerização
9.
J Colloid Interface Sci ; 574: 300-311, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32335481

RESUMO

NiSe nanoparticles are electrodeposited over a forest of carbon nanotubes (CNTs) to form an intertwined and porous network. The assynthesized composite (denoted as CNT@NiSe/SS) is used as a free-standing and multifunctional electrode for bothsupercapacitorsand overallwater splitting applications. For a supercapacitor application, CNT@NiSe/SS exhibits higher specific capacity and improved rate capability compared with individual NiSe and CNTs. A hybrid supercapacitor device consisting of battery-like CNT@NiSe/SS and EDLC-like graphene delivers a maximum energy density of 32.1 Wh kg-1 at a power density of 823 W kg-1 and has excellent stability after a floating test of 50 h. On the other hand, CNT@NiSe/SS also serves as a bifunctional electrocatalyst with high activity for overall water splitting. The CNT@NiSe/SS electrode displays excellent hydrogen and oxygen evolution reaction performance with the lowest overpotential of 174 mV at 10 mA cm-2 and 267 mV at 50 mA cm-2, respectively. The symmetrical two-electrode system requires an operating potential of 1.71 V to achieve a current density of 10 mA cm-2. Furthermore, this electrolyzer shows a negligible increment in potential after 24 hof continuouswater splitting. The outstanding performances of CNT@NiSe/SS can be attributed to the synergistic effect of NiSe and CNTs.

10.
Acc Chem Res ; 53(2): 496-507, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32027125

RESUMO

Molecules and materials derived from self-assembled extended π-systems have strong and reversible optical properties, which can be modulated with external stimuli such as temperature, mechanical stress, ions, the polarity of the medium, and so on. In many cases, absorption and emission responses of self-assembled supramolecular π-systems are manifested several times higher when compared with the individual molecular building blocks. These properties of molecular assemblies encourage scientists to have a deeper understanding of their design to explore them for suitable optoelectronic applications. Therefore, it is important to bring in highly responsive optical features in π-systems, for which it is necessary to modify their structures by varying the conjugation length and by introducing donor-acceptor functional groups. Using noncovalent forces, π-systems can be put together to form assemblies of different shapes and sizes with varied optical band gaps through controlling intermolecular electronic interactions. In addition, using directional forces, it is possible to bring anisotropy to the self-assembled nanostructures, facilitating efficient exciton migration, resulting in the modulation of optical and electron-transport properties. In this Account, we mainly summarize our findings with optically tunable self-assemblies of extended π-systems such as p-phenylenevinylenes (PVs), p-phenyleneethynylenes (PEs), and diketopyrrolopyrroles (DPPs) as different stimuli-responsive platforms to develop sensors and security materials. We start with how PV self-assemblies and their coassemblies with appropriate electron-deficient systems can be used for the sensing of analytes in contact mode or in the vapor phase. For example, whereas the PV having electron-deficient terminal groups has high sensitivity toward trinitrotoluene (TNT) in contact mode, the supercoiled fibers formed by the coassembly of self-sorted stacks of C3-symmetrical PV and C3-symmetrical electron-deficient perylene bisimide are capable of sensing vapors of nitrobenzene and o-toluidine. The power of different functional groups in combination with PVs has been further illustrated by attaching CO2-sensitive tertiary amine moieties to a cyano-substituted PV, which allowed the bimodal detection of CO2 using fluorescence and Raman spectroscopy. Interestingly, the functionalization of PVs with terminal amide groups and chiral alkoxy side chains provided a mechanochromic system that allows self-erasable imaging. Whereas PVs exhibit quenching of fluorescence in most cases during self-assembly, PE derivatives exhibit aggregation-induced emission. This property of PEs has been exploited for the development of stimuli-responsive security materials, especially for currency and documents. For instance, the blue fluorescence of a PE attached to hydrophilic oxyethylene side chains coated on a filter paper upon contact with water changes to cyan emission due to the change in the molecular packing. Interestingly, the molecular packing of a Bodipy-attached PE-based gelator allowed a stress-induced change in the emission behavior, resulting in strong near-infrared (NIR) emission upon the application of mechanical stress or gelation. Finally, the use of DPP-based π-systems for the development of NIR transparent optical filters that block UV-vis light and their security- and forensic-related applications are described. These selected examples of the π-system self-assemblies provide an idea of the current status and future opportunities for scientists interested in this field of self-assembly and soft materials research.

11.
Chempluschem ; 84(9): 1405-1412, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944049

RESUMO

Supramolecular polymerization of donor-acceptor type molecules leads to mixed or self-sorted assemblies depending on the donor-acceptor strength and extent of noncovalent interactions between the components. Herein, we discuss how competing hydrogen bonding motifs control the supramolecular polymerization pathway of a two-component molecular π-system of oligo(p-phenylenevinylene) (OPV-B and OPV-P) donors and perylene bisimide (PBI-B and PBI-A) acceptors. It is shown that among the four different binary combinations (M1-M4) studied, the carboxylic acid/pyridine heterosystem (1 : 2 molar ratio) in M4 favors the coassembled donor-acceptor stacks with a distinct morphology, whose aggregation pathways in toluene/THF (v/v : 9/1) is different from that of the individual components. The nanoscopic molecular arrangement of OPV-P driven by PBI-A in M4 was found to influence the bulk properties such as, morphology, thermomechanical stability and electrical conductivity. For example, the G' and G'' values of M4 is an order of the magnitude higher and exhibited a four-probe electrical conductivity (11.93 Scm-1 ) higher than that of its individual components. Thus, hydrogen-bond intervention is a powerful strategy to control the supramolecular polymerization of two-component donor-acceptor π-systems.

12.
Angew Chem Int Ed Engl ; 56(50): 16018-16022, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29053212

RESUMO

Functional differences between superhydrophobic surfaces, such as lotus leaf and rose petals, are due to the subtle architectural features created by nature. Mimicry of these surfaces with synthetic molecules continues to be fascinating as well as challenging. Herein, we demonstrate how inherently hydrophilic alumina surface can be modified to give two distinct superhydrophobic behaviors. Functionalization of alumina with an organic ligand resulted in a rose-petal-like surface (water pinning) with a contact angle of 145° and a high contact angle hysteresis (±69°). Subsequent interaction of the ligand with Zn2+ resulted in a lotus-leaf-like surface with water rolling behavior owing to high contact angle (165°) and low-contact-angle-hysteresis (±2°). In both cases, coating of an aromatic bis-aldehyde with alkoxy chain substituents was necessary to emulate the nanowaxy cuticular feature of natural superhydrophobic materials.

13.
Angew Chem Int Ed Engl ; 56(41): 12634-12638, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28799691

RESUMO

Higher-order super-helical structures derived from biological molecules are known to evolve through opposite coiling of the initial helical fibers, as seen in collagen protein. A similar phenomenon is observed in a π-system self-assembly of chiral oligo(phenyleneethylene) derivatives (S)-1 and (R)-1 that explains the unequal formation of both left- and right-handed helices from molecule having a specific chiral center. Concentration- and temperature-dependent circular dichroism (CD) and UV/Vis spectroscopic studies revealed that the initial formation of helical aggregates is in accordance with the molecular chirality. At the next level of hierarchical self-assembly, coiling of the fibers occurs with opposite handedness, thereby superseding the command of the molecular chirality. This was confirmed by solvent-dependent decoiling of super-helical structures and concentration-dependent morphological analysis.

14.
Chem Asian J ; 12(6): 623-627, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28145057

RESUMO

An NHC-mediated synthesis of pyrrolo[2,1-a]isoquinoline and indolizine derivatives with potential biological activity is reported (NHC=N-heterocyclic carbene). The preliminary photophysical studies of such compounds reveal that they have potential application in the sensing of volatile organic compounds (VOCs).

15.
ACS Appl Mater Interfaces ; 9(23): 19417-19426, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27726323

RESUMO

Among several methodologies to improve the solution processing of graphene-based materials, noncovalent functionalization has been considered as the simplest and nondestructive method. Herein, we show that molecular self-assembly process can be used as a useful tool to exfoliate reduced graphene oxide (RGO), resulting in hybrid materials with improved physical properties. Upon interacting with a π-gelator, the dispersing ability of the RGO increased significantly in most of nonpolar and polar aprotic solvents when compared to the bare one. The amount of RGO dispersed was 1.7-1.8 mg mL-1 in solvents such as toluene, o-dichlorobenzene (ODCB) and tetrahydrofuran (THF). Morphological studies revealed that aggregation of π-gelator over RGO helps to exfoliate graphene layers to remain as individual sheets with higher surface area. Experimental studies revealed enhanced surface area (250 m2 g-1) and better conductivity (3.7 S m-1) of the hybrid materials with 30% of RGO content resulting in excellent electrochemical performance (specific capacitance of 181 F g-1) as electrodes for supercapacitors.

16.
Angew Chem Int Ed Engl ; 55(35): 10345-9, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27461073

RESUMO

In an attempt to gather experimental evidence for the influence of carbon allotropes on supramolecular chirality, we found that carbon nanotubes (CNTs) facilitate amplification of the molecular chirality of a π-gelator (MC-OPV) to supramolecular helicity at a concentration much lower than that required for intermolecular interaction. For example, at a concentration 1.8×10(-4) m, MC-OPV did not exhibit a CD signal; however, the addition of 0-0.6 mg of SWNTs resulted in amplified chirality as evident from the CD spectrum. Surprisingly, AFM analysis revealed the formation of thick helical fibers with a width of more than 100 nm. High-resolution TEM analysis and solid-state UV/Vis/NIR spectroscopy revealed that the thick helical fibers were cylindrical cables composed of individually wrapped and coaxially aligned SWNTs. Such an impressive effect of CNTs on supramolecular chirality and cylindrical-cable formation has not been reported previously.

17.
Chem Commun (Camb) ; 50(35): 4616-9, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24667852

RESUMO

A facile one-pot benzannulation strategy involving phosphine-3-alkyl allenoate zwitterions and cyclic 1,2-diones is described. The strategy is effectively utilized in the synthesis of fluoranthenes and benzo[a]aceanthrylenes with impressive photophysical properties. This is the first report on an intermolecular benzannulation using a 3-alkyl allenoate as a four carbon synthon.


Assuntos
Ácidos Graxos Insaturados/química , Fosfinas/química , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Benzo(a)Antracenos/síntese química , Ciclização , Fluorenos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...