Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(1): 313-324, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054599

RESUMO

Transient permeation enhancers (PEs) have been widely used to improve the oral absorption of macromolecules. During pharmaceutical development, the correct selection of the macromolecule, PE, and the combination needs to be made to maximize oral bioavailability and ensure successful clinical development. Various in vitro and in vivo methods have been investigated to optimize this selection. In vitro methods are generally preferred by the pharmaceutical industry to reduce the use of animals according to the "replacement, reduction, and refinement" principle commonly termed "3Rs," and in vitro methods typically have a higher throughput. This paper compares two in vitro methods that are commonly used within the pharmaceutical industry, being Caco-2 and an Ussing chamber, to two in vivo models, being in situ intestinal instillation to rats and in vivo administration via an endoscope to pigs. All studies use solution formulation of sodium caprate, which has been widely used as a PE, and two macromolecules, being FITC-dextran 4000 Da and MEDI7219, a GLP-1 receptor agonist peptide. The paper shares our experiences of using these models and the challenges with the in vitro models in mimicking the processes occurring in vivo. The paper highlights the need to consider these differences when translating data generated using these in vitro models for evaluating macromolecules, PE, and combinations thereof for enabling oral delivery.


Assuntos
Absorção Intestinal , Mucosa Intestinal , Humanos , Ratos , Animais , Suínos , Mucosa Intestinal/metabolismo , Células CACO-2 , Intestinos , Administração Oral , Permeabilidade
2.
Mol Pharm ; 13(8): 2796-807, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27377099

RESUMO

Design of slowly metabolized compounds is an important goal in many drug discovery projects. Standard hepatocyte suspension intrinsic clearance (CLint) methods can only provide reliable CLint values above 2.5 µL/min/million cells. A method that permits extended incubation time with maintained performance and metabolic activity of the in vitro system is warranted to allow in vivo clearance predictions and metabolite identification of slowly metabolized drugs. The aim of this study was to evaluate the static HµREL coculture of human hepatocytes with stromal cells to be set up in-house as a standard method for in vivo clearance prediction and metabolite identification of slowly metabolized drugs. Fourteen low CLint compounds were incubated for 3 days, and seven intermediate to high CLint compounds and a cocktail of cytochrome P450 (P450) marker substrates were incubated for 3 h. In vivo clearance was predicted for 20 compounds applying the regression line approach, and HµREL coculture predicted the human intrinsic clearance for 45% of the drugs within 2-fold and 70% of the drugs within 3-fold of the clinical values. CLint values as low as 0.3 µL/min/million hepatocytes were robustly produced, giving 8-fold improved sensitivity of robust low CLint determination, over the cutoff in hepatocyte suspension CLint methods. The CLint values of intermediate to high CLint compounds were at similar levels both in HµREL coculture and in freshly thawed hepatocytes. In the HµREL coculture formation rates for five P450-isoform marker reactions, paracetamol (CYP1A2), 1-OH-bupropion (CYP2B6), 4-OH-diclofenac (CYP2C9), and 1-OH-midazolam (3A4) were within the range of literature values for freshly thawed hepatocytes, whereas 1-OH-bufuralol (CYP2D6) formation rate was lower. Further, both phase I and phase II metabolites were detected and an increased number of metabolites were observed in the HµREL coculture compared to hepatocyte suspension. In conclusion, HµREL coculture can be applied to accurately estimate intrinsic clearance of slowly metabolized drugs and is now utilized as a standard method for in vivo clearance prediction of such compounds in-house.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Células Cultivadas , Técnicas de Cocultura/métodos , Criopreservação , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Sistema Enzimático do Citocromo P-450/química , Hepatócitos/citologia , Humanos , Taxa de Depuração Metabólica , Células Estromais/citologia , Células Estromais/metabolismo
3.
Int J Pharm ; 505(1-2): 361-8, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27073083

RESUMO

Excised rat intestinal tissue mounted in an Ussing chamber can be used for intestinal permeability assessments in drug development. The outer layer of the intestine, the serosa and part of the muscle layer, is traditionally removed since it is considered a barrier to the diffusion of nutrients and oxygen as well as to that of pharmaceutical substances. However, the procedure for removing the serosal-muscle layer, i.e. stripping, is a technically challenging process in the pre-experimental preparation of the tissue which may result in tissue damage and reduced viability of the segment. In this study, the viability of stripped and native (non-stripped) rat small intestine tissue segments mounted in Ussing chambers was monitored and the apparent permeability of the tissue to a set of test compounds across both tissue preparations was determined. Electrical measurements, in particular the potential difference (PD) across the intestinal membrane, were used to evaluate the viability. In this study, there were no differences in initial PD (health status of the tissue) or PD over time (viability throughout the experiment) between native and stripped rat jejunum segments. Overall, there were also no significant differences in permeability between stripped and native rat intestinal tissue for the compounds in this study. Based on these results, we propose that stripping can be excluded from the preparation procedures for rat jejunal tissue for permeability studies when using the Ussing chamber technique.


Assuntos
Absorção Intestinal , Intestino Delgado/metabolismo , Jejuno/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Cultura em Câmaras de Difusão , Masculino , Permeabilidade , Ratos , Ratos Wistar , Sobrevivência de Tecidos
4.
J Pharm Sci ; 99(4): 2166-75, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19827099

RESUMO

The paracellular space defines the passive permeation of hydrophilic compounds in epithelia. The goal of this study was to characterise the paracellular permeation pathway in the human intestinal wall and differentiated epithelial cell models (MDCKII, Caco-2 and 2/4/A1). The permeabilities of hydrophilic polyethylene glycols (PEG) were investigated in diffusion chambers, and mass spectrometry was used to obtain accurate concentrations for each PEG molecule. The paracellular porosity and the size of the pores in the membranes were estimated from the PEG permeability data using an effusion-based approach. The porosities were found to be low (fraction 10(-7)-10(-5) of the epithelial surface) in all investigated membranes. Two different pore sizes (radii 5-6 and >10 A) were detected in the human intestinal epithelium and the Caco-2 and MDCKII cells, while only one (about 15 A) in the 2/4/A1 monolayer. The paracellular porosities of the human small intestine and 2/4/A1 monolayers were larger (>10(-7)) than that of the MDCKII and Caco-2 cells (<10(-7)). We report for the first time the quantitative values describing both porosity and pore size of the paracellular space in the human intestine. The cell models deviate from the small intestine either with respect to porosity (Caco-2, MDCKII) or pore size distribution (2/4/A1).


Assuntos
Permeabilidade da Membrana Celular , Mucosa Intestinal/metabolismo , Polietilenoglicóis/farmacocinética , Animais , Células CACO-2 , Linhagem Celular , Cães , Humanos , Mucosa Intestinal/citologia , Jejuno/metabolismo , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...