Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Inorg Biochem ; 91(1): 35-45, 2002 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12121760

RESUMO

Recent stopped-flow kinetics demonstrated the existence of an intermediate before the occurrence of the final product of the reaction of both iron-containing microperoxidase-8 (Fe(III)MP-8) and manganese-containing microperoxidase-8 (Mn(III)MP-8) with H(2)O(2). The intermediate was assigned to be (hydro)peroxo-iron. With both mini-catalysts the final state obtained after 30-40 ms showed a resemblance to PorM(IV)MP-8[double bond]O(R(+)*); (R(+)*) is a radical located at the peptide. Quantum mechanical calculations indicate that hydroperoxo-iron is inactive as a catalytic intermediate in cytochrome P450 (P450)-type catalysis. Instead, the calculations suggest that peroxo-iron acts as the catalytic intermediate in P450-type catalysis. In addition, the calculations demonstrate that, although less likely, the possibility that oxenoid-iron acts as a catalytic intermediate in P450 catalysis cannot be fully excluded. An interesting aspect of the reactions catalysed by MP-8 is the possibility that, in view of the reversibility of the reactions between (hydro)peroxo-iron and oxenoid-iron, H(2)O plays a decisive role, at least in some cytochromes P450, in the removal of halogens, avoiding the production of compounds hazardous to the organism.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Ferro/química , Peroxidases/química , Sistema Enzimático do Citocromo P-450/metabolismo , Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Peróxido de Hidrogênio/química , Estrutura Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oxigênio/química , Peroxidases/metabolismo
3.
J Am Chem Soc ; 124(7): 1214-21, 2002 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-11841289

RESUMO

Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8. The mechanism of formation of the reactive metal-oxo and metal-hydroperoxo intermediates of M(III)MP-8 upon reaction of H(2)O(2) with Fe(III)MP-8 and Mn(III)MP-8 was investigated by rapid-scan stopped-flow spectroscopy and transient EPR. Two steps (k(obs1) and k(obs2)) were observed and analyzed for the reaction of hydrogen peroxide with both catalysts. The plots of k(obs1) as function of [H(2)O(2)] at pH 8.0 and pH 9.1 for Fe(III)MP-8, and at pH 10.2 and pH 10.9 for Mn(III)MP-8, exhibit saturation kinetics, which reveal the accumulation of an intermediate. Double reciprocal plots of 1/k(obs1) as function of 1/[H(2)O(2)] at different pH values reveal a competitive effect of protons in the oxidation of M(III)MP-8. This effect of protons is confirmed by the linear dependence of 1/k(obs1) on [H(+)] showing that k(obs1) increases with the pH. The UV-visible spectra of the intermediates formed at the end of the first step (k(obs1)) exhibit a spectrum characteristic of a high-valent metal-oxo intermediate for both catalysts. Transient EPR of Mn(III)MP-8 incubated with an excess of H(2)O(2), at pH 11.5, shows the detection of a free radical signal at g approximately equal to 2 and of a resonance at g approximately equal to 4 characteristic of a Mn(IV) (S = 3/2) species. On the basis of these results, the following mechanism is proposed: (i) M(III)MP-8-OH(2) is deprotonated to M(III)MP-8-OH in a rapid preequilibrium step, with a pK(a) = 9.2 +/- 0.9 for Fe(III)MP-8 and a pK(a) = 11.2 +/- 0.3 for Mn(III)MP-8; (ii) M(III)MP-8-OH reacts with H(2)O(2) to form Compound 0, M(III)MP8-OOH, with a second-order rate constant k(1) = (1.3 +/- 0.6) x 10(6) M(-1) x s(-1) for Fe(III)MP-8 and k(1) = (1.6 +/- 0.9) x 10(5) M(-1) x s(-1) for Mn(III)MP-8; (iii) this metal-hydroperoxo intermediate is subsequently converted to a high-valent metal-oxo species, M(IV)MP-8=O, with a free radical on the peptide (R(*+)). The first-order rate constants for the cleavage of the hydroperoxo group are k(2) = 165 +/- 8 s(-1) for Fe(III)MP-8 and k(2) = 145 +/- 7 s(-1) for Mn(III)MP-8; and (iv) the proposed M(IV)MP-8=O(R(*+)) intermediate slowly decays (k(obs2)) with a rate constant of k(obs2) = 13.1 +/- 1.1 s(-)(1) for Fe(III)MP-8 and k(obs2) = 5.2 +/- 1.2 s(-1) for Mn(III)MP-8. The results show that Compound 0 is formed prior to what is analyzed as a high-valent metal-oxo peptide radical intermediate.


Assuntos
Compostos Férricos/química , Peróxido de Hidrogênio/química , Manganês/química , Peroxidases/química , Animais , Compostos Férricos/metabolismo , Cavalos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Manganês/metabolismo , Peroxidases/metabolismo , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...