Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 16(1): 244, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990425

RESUMO

Long-term societal prosperity depends on addressing the world's energy and environmental problems, and photocatalysis has emerged as a viable remedy. Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges. It has been demonstrated that the fabrication of III-V semiconductor-based photocatalysts is effective in increasing solar light absorption, long-term stability, large-scale production and promoting charge transfer. This focused review explores on the current developments in III-V semiconductor materials for solar-powered photocatalytic systems. The review explores on various subjects, including the advancement of III-V semiconductors, photocatalytic mechanisms, and their uses in H2 conversion, CO2 reduction, environmental remediation, and photocatalytic oxidation and reduction reactions. In order to design heterostructures, the review delves into basic concepts including solar light absorption and effective charge separation. It also highlights significant advancements in green energy systems for water splitting, emphasizing the significance of establishing eco-friendly systems for CO2 reduction and hydrogen production. The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion. The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...