Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38801681

RESUMO

The continuous detection of emotional states has many applications in mental health, marketing, human-computer interaction, and assistive robotics. Electrodermal activity (EDA), a signal modulated by sympathetic nervous system activity, provides continuous insight into emotional states. However, EDA possesses intricate nonstationary and nonlinear characteristics, making the extraction of emotion-relevant information challenging. We propose a novel graph signal processing (GSP) approach to model EDA signals as graphical networks, termed EDA-graph. The GSP leverages graph theory concepts to capture complex relationships in time-series data. To test the usefulness of EDA-graphs to detect emotions, we processed EDA recordings from the CASE emotion dataset using GSP by quantizing and linking values based on the Euclidean distance between the nearest neighbors. From these EDA-graphs, we computed the features of graph analysis, including total load centrality (TLC), total harmonic centrality (THC), number of cliques (GNC), diameter, and graph radius, and compared those features with features obtained using traditional EDA processing techniques. EDA-graph features encompassing TLC, THC, GNC, diameter, and radius demonstrated significant differences (p<0.05) between five emotional states (Neutral, Amused, Bored, Relaxed, and Scared). Using machine learning models for classifying emotional states evaluated using leave-one-subject-out cross-validation, we achieved a five-class F1 score of up to 0.68.

2.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474961

RESUMO

This study investigated the impact of auditory stimuli on muscular activation patterns using wearable surface electromyography (EMG) sensors. Employing four key muscles (Sternocleidomastoid Muscle (SCM), Cervical Erector Muscle (CEM), Quadricep Muscles (QMs), and Tibialis Muscle (TM)) and time domain features, we differentiated the effects of four interventions: silence, music, positive reinforcement, and negative reinforcement. The results demonstrated distinct muscle responses to the interventions, with the SCM and CEM being the most sensitive to changes and the TM being the most active and stimulus dependent. Post hoc analyses revealed significant intervention-specific activations in the CEM and TM for specific time points and intervention pairs, suggesting dynamic modulation and time-dependent integration. Multi-feature analysis identified both statistical and Hjorth features as potent discriminators, reflecting diverse adaptations in muscle recruitment, activation intensity, control, and signal dynamics. These features hold promise as potential biomarkers for monitoring muscle function in various clinical and research applications. Finally, muscle-specific Random Forest classification achieved the highest accuracy and Area Under the ROC Curve for the TM, indicating its potential for differentiating interventions with high precision. This study paves the way for personalized neuroadaptive interventions in rehabilitation, sports science, ergonomics, and healthcare by exploiting the diverse and dynamic landscape of muscle responses to auditory stimuli.


Assuntos
Contração Muscular , Dispositivos Eletrônicos Vestíveis , Contração Muscular/fisiologia , Intervenção Psicossocial , Eletromiografia , Músculos do Pescoço/fisiologia
3.
Stud Health Technol Inform ; 294: 941-942, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612249

RESUMO

In this work, an analysis based on complex demodulation is proposed to classify dichotomous emotional states using Electrodermal activity (EDA) signals. For this, annotated happy and sad EDA is obtained from an online public database. The sympathetic activity indices, namely Time-varying (TVSymp) and Modified TVSymp, are computed from the reconstructed EDA signal. Further, the derivative of phasic EDA is calculated from the phasic component obtained using the convex optimization (cvxEDA) based EDA decomposition method. Five statistical features are computed from each index and used for the classification. The results of the classification indicate that these features are capable of differentiating happy and sad emotional states with 75% accuracy. This technique could be effective in the identification of clinical disorders associated with happy and sad emotional states.


Assuntos
Emoções , Resposta Galvânica da Pele , Indexação e Redação de Resumos
4.
Stud Health Technol Inform ; 281: 163-167, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042726

RESUMO

In this work, an attempt has been made to classify various emotional states in Electrodermal Activity (EDA) signals using modified Hjorth features and non-parametric classifiers. For this, the EDA signals are collected from a publicly available online database. The EDA is decomposed into SCL (Skin Conductance Level) and SCR (Skin Conductance Response). Five features, namely activity, mobility, complexity, chaos, and hazard, collectively known as modified Hjorth features, are extracted from SCR and SCL. Four non-parametric classifiers, namely, random forest, k-nearest neighbor, support vector machine, and rotation forest, are used for the classification. The results demonstrate that the proposed approach can classify the emotional states in EDA. Most of the features exhibit statistical significance in discriminating emotional states. It is found that the combination of modified Hjorth features and rotation forest is most accurate in classifying the emotional states. Thus, the result demonstrates that this method can recognize valence and arousal dimensions under various clinical conditions.


Assuntos
Emoções , Resposta Galvânica da Pele , Nível de Alerta , Máquina de Vetores de Suporte
5.
J Med Syst ; 45(4): 49, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33660087

RESUMO

In this work, an attempt has been made to classify emotional states using electrodermal activity (EDA) signals and multiscale convolutional neural networks. For this, EDA signals are considered from a publicly available "A Dataset for Emotion Analysis using Physiological Signals" (DEAP) database. These signals are decomposed into multiple-scales using the coarse-grained method. The multiscale signals are applied to the Multiscale Convolutional Neural Network (MSCNN) to automatically learn robust features directly from the raw signals. Experiments are performed with the MSCNN approach to evaluate the hypothesis (i) improved classification with electrodermal activity signals, and (ii) multiscale learning captures robust complementary features at a different scale. Results show that the proposed approach is able to differentiate various emotional states. The proposed approach yields a classification accuracy of 69.33% and 71.43% for valence and arousal states, respectively. It is observed that the number of layers and the signal length are the determinants for the classifier performance. The performance of the proposed approach outperforms the single-layer convolutional neural network. The MSCNN approach provides end-to-end learning and classification of emotional states without additional signal processing. Thus, it appears that the proposed method could be a useful tool to assess the difference in emotional states for automated decision making.


Assuntos
Resposta Galvânica da Pele , Redes Neurais de Computação , Nível de Alerta , Emoções , Humanos , Aprendizagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...