Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Audiol Res ; 11(4): 673-690, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34940019

RESUMO

Many hearing difficulties can be explained as a loss of audibility, a problem easily detected and treated using standard audiological procedures. Yet, hearing can be much poorer (or more impaired) than audibility predicts because of deficits in the suprathreshold mechanisms that encode the rapidly changing, spectral, temporal, and binaural aspects of the sound. The ability to evaluate these mechanisms requires well-defined stimuli and strict adherence to rigorous psychometric principles. This project reports on the comparison between a laboratory-based and a mobile system's results for psychoacoustic assessment in adult listeners with normal hearing. A description of both systems employed is provided. Psychoacoustic tests include frequency discrimination, amplitude modulation detection, binaural encoding, and temporal gap detection. Results reported by the mobile system were not significantly different from those collected with the laboratory-based system for most of the tests and were consistent with those reported in the literature. The mobile system has the potential to be a feasible option for the assessment of suprathreshold auditory encoding abilities.

2.
Hear Res ; 398: 108080, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33038827

RESUMO

Hearing loss is associated with changes at the peripheral, subcortical, and cortical auditory stages. Research often focuses on these stages in isolation, but peripheral damage has cascading effects on central processing, and different stages are interconnected through extensive feedforward and feedback projections. Accordingly, assessment of the entire auditory system is needed to understand auditory pathology. Using a novel stimulus paired with electroencephalography in young, normal-hearing adults, we assess neural function at multiple stages of the auditory pathway simultaneously. We employ click trains that repeatedly accelerate then decelerate (3.5 Hz click-rate-modulation) introducing varying inter-click-intervals (4 to 40 ms). We measured the amplitude of cortical potentials, and the latencies and amplitudes of Waves III and V of the auditory brainstem response (ABR), to clicks as a function of preceding inter-click-interval. This allowed us to assess cortical processing of click-rate-modulation, as well as adaptation and neural recovery time in subcortical structures (probably cochlear nuclei and inferior colliculi). Subcortical adaptation to inter-click intervals was reflected in longer latencies. Cortical responses to the 3.5 Hz modulation included phase-locking, probably originating from auditory cortex, and sustained activity likely originating from higher-level cortices. We did not observe any correlations between subcortical and cortical responses. By recording neural responses from different stages of the auditory system simultaneously, we can study functional relationships among levels of the auditory system, which may provide a new and helpful window on hearing and hearing impairment.


Assuntos
Córtex Auditivo , Perda Auditiva , Estimulação Acústica , Vias Auditivas , Potenciais Evocados Auditivos do Tronco Encefálico , Audição , Humanos
3.
IEEE Trans Neural Syst Rehabil Eng ; 28(1): 143-151, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31804940

RESUMO

This paper evaluated the performance of an envelope enhancement (EE) algorithm subjectively by children with auditory processing disorder (APD), and objectively through computational models. Speech intelligibility data was collected from children with APD, for unprocessed and envelope-enhanced speech in the presence of stationary and non-stationary background noise at different signal to noise ratios (SNRs), both with and without noise reduction (NR) algorithms as a front-end to the EE algorithm. Furthermore, intrusive and non-intrusive objective speech intelligibility metrics were derived to predict the perceptual impact of this EE algorithm. Subjective data for stationary noise conditions revealed that the combination of NR and EE algorithms significantly improved the speech intelligibility scores at poor SNRs. In contrast, the same combination was ineffective in improving speech intelligibility in non-stationary noise conditions. Taken together, subjective results suggest that exaggerating the envelope cues improves speech identification scores for children with APD. However, the benefit obtained varies depending upon the type and level of the background noise. Both intrusive and non-intrusive objective speech intelligibility estimators exhibited good correlation with the subjective data, with the intrusive metric demonstrating better generalization capabilities. Implications of these results for hearing aid applications for children with APD is discussed.


Assuntos
Transtornos da Percepção Auditiva/diagnóstico , Adolescente , Algoritmos , Transtornos da Percepção Auditiva/psicologia , Criança , Simulação por Computador , Sinais (Psicologia) , Desenho de Equipamento , Feminino , Auxiliares de Audição , Humanos , Masculino , Ruído , Razão Sinal-Ruído , Inteligibilidade da Fala , Percepção da Fala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...