Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 19(7): e202200213, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35714172

RESUMO

Antimicrobial resistance is a serious challenge to modern medicine. Besides imposing high financial burden, multidrug resistant infections are directly responsible for high morbidity and mortality. Even though a number of antibiotics are currently available to treat infections caused by ESKAPE organisms, more and more bacterial strains are becoming resistant to these drugs. Prevailing circumstances pose an urgent unmet need for the development of newer antimicrobials to treat the infections caused by MDR organisms. Rhodanine and structurally related 5-membered heterocycles possess wide range of pharmacological activities. A number of these derivatives have shown good to potent inhibition against various microorganisms. They are reported to alter the function of DNA gyrase B, metallo-ß-lactamases, penicillin binding protein (PBP), Mur ligases, RNA polymerase, Enoyl ACP reductases, 1-deoxy-d-xylulose-5-phosphate reductoisomerase. etc which are vital in bacterial growth, survival and replication. In this study, we have generated a library of Rhodanine and related 5 membered heterocyclic derivatives and screened them against a panel of pathogens. Among all the compounds, 2a-i, 3a-b, 3g, 4, 6b-c, 6e, 6g, 12a-b and 14b-c have demonstrated good to moderate inhibition against S. aureus (MIC 0.125-8 µg/mL). Further, compound 17b demonstrated moderate activity against A. baumannii (MIC 8 µg/mL). In addition, compounds 2a, 2e, 4, 6c, 6g and 14b have shown good to mild inhibition against MDR S. aureus including VRSA (MIC 0.5-16 µg/mL) with good selectivity index 20-1600. In addition, compound 2e inhibited the growth gradually after 6 h in time kill kinetic studies and not antagonized with the tested FDA approved drugs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Rodanina , Antibacterianos/química , Cinética , Testes de Sensibilidade Microbiana , Rodanina/química , Rodanina/farmacologia , Staphylococcus aureus
2.
Bioorg Chem ; 116: 105288, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454299

RESUMO

Infections caused due to multidrug resistant organisms have emerged as a constant menace to human health. Even though numerous antibiotics are currently available for treating infectious diseases, a great number of bacterial strains have acquired resistance to many of them. Among these, infections caused due to Staphylococcus aureus are predominant in adult and paediatric population. Indole is a prominent chemical scaffold found in many pharmacologically active natural products and synthetic drugs. A number of oxime ether containing compounds have attracted attention of researchers owing to their interesting biological properties. Current work details the synthesis of indole containing oxime ether derivatives and their evaluation for antimicrobial activity against a panel of bacterial and mycobacterial strains. Synthesized compounds demonstrated good to moderate activity against drug-resistant S. aureus including resistant to vancomycin. Among all, compound 5h was found to possess potent activity against susceptible as well as MRSA and VRSA strains of S. aureus with MIC of 1 µg/mL and 2-4 µg/mL respectively. In addition, compound 5h was found to be non-toxic to Vero cells and exhibited good selectivity index of >40. Further, 5h, E-9a and E-9b possessed good biofilm inhibition against S. aureus. With these assuring biological properties, synthesized compounds could be potential prospective antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Oximas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Resistência a Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oximas/síntese química , Oximas/química , Relação Estrutura-Atividade , Resistência a Vancomicina/efeitos dos fármacos , Células Vero
3.
Eur J Med Chem ; 220: 113445, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33901899

RESUMO

Hymenialdisine an alkaloid of oroidin class has drawn the attention of researchers owing to its unique structural features and interesting biological properties. Hymenialdisine exhibited promising inhibitory activity against a number of therapeutically important kinases viz., CDKs, GSK-3ß etc., and showed anti-cancer, anti-inflammatory, anti-HIV, neuroprotective, anti-fouling, anti-plasmodium properties. Hymenialdisine and other structurally related oroidin alkaloids such as dibromo-hymenialdisine, stevensine, hymenin, axinohydantoin, spongicidines A-D, latonduines and callyspongisines contain pyrrolo[2,3-c] azepin-8-one core in common. Keeping in view of the interesting structural and therapeutic features of HMD, several structural modifications were carried around the fused-azepinone core which resulted in a number of diverse structural motifs like indolo-azepinones, paullones, aza-paullones, darpones and 5,7-dihydro-6H-benzo[b]pyrimido[4,5-d] azepin-6-one. In this review, an attempt is made to collate and review the structures of diverse hymenialdisine and related fused-azepinones of synthetic/natural origin and their biological properties.


Assuntos
Fármacos Anti-HIV/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Azepinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Fármacos Anti-HIV/química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/química , Azepinas/química , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Poríferos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...