Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(22): 3539-3550, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38780022

RESUMO

Dengue virus (DENV) is the most prevalent global arbovirus, exhibiting a high worldwide incidence with intensified severity of symptoms and alarming mortality rates. Faced with the limitations of diagnostic methods, an optical and electrochemical biosystem was developed for the detection of DENV genotypes 1 and 2, using cysteine (Cys), cadmium telluride (CdTe) quantum dots, and anti-DENV antibodies. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the immunosensor. The AFM and SPR results demonstrated discernible topographic and angular changes confirming the biomolecular recognition. Different concentrations of DENV-1 and DENV-2 were evaluated (0.05 × 106 to 2.0 × 106 PFU mL-1), resulting in a maximum anodic shift (ΔI%) of 263.67% ± 12.54 for DENV-1 and 63.36% ± 3.68 for DENV-2. The detection strategies exhibited a linear response to the increase in viral concentration. Excellent linear correlations, with R2 values of 0.95391 for DENV-1 and 0.97773 for DENV-2, were obtained across a broad concentration range. Data analysis demonstrated high reproducibility, displaying relative standard deviation values of 3.42% and 3.62% for Cys-CdTe-antibodyDENV-1-BSA and Cys-CdTe-antibodyDENV-2-BSA systems. The detection limits were 0.34 × 106 PFU mL-1 and 0.02 × 106 PFU mL-1, while the quantification limits were set at 1.49 × 106 PFU mL-1 and 0.06 × 106 PFU mL-1 for DENV-1 and DENV-2, respectively. Therefore, the biosensing apparatus demonstrates analytical effectiveness in viral screening and can be considered an innovative solution for early dengue diagnosis, contributing to global public health.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Dengue , Telúrio , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/imunologia , Técnicas Biossensoriais/métodos , Telúrio/química , Humanos , Dengue/diagnóstico , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Pontos Quânticos/química , Ressonância de Plasmônio de Superfície/métodos , Cisteína/química , Compostos de Cádmio/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/análise , Imunoensaio/métodos , Imunoensaio/instrumentação , Limite de Detecção , Microscopia de Força Atômica
2.
ACS Appl Mater Interfaces ; 14(1): 41-48, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932313

RESUMO

Zika virus (ZIKV) infection is associated with the Guillain-Barré syndrome, and when non-vector congenital transmission occurs, fetal brain abnormalities are expected. After ZIKV infection, the blood, breast milk, and other body fluids contain low viral loads. Their detection is challenging as it requires the processing of larger input volumes of the clinical samples. Pre-enrichment is a valuable strategy to increase the analyte concentration. Therefore, the authors propose the use of a hierarchal composite polyaniline-(electrospun nanofiber) hydrogel mat (ENM) for the simultaneous enrichment and impedimetric sensing of ZIKV viral particles. The electrospinning conditions of polyvinyl alcohol and alginate, including blend formulation, were optimized through a factorial design. Disintegration and gelatinization were controlled via cross-linking to improve the hydrogel properties. Hierarchization was achieved by in situ chemical deposition of conductive polyaniline. The carboxyl groups of the ENM were used for the covalent immobilization of anti-ZIKV polyclonal antibodies used in the specific recognition of ZIKV within the medium of Vero cell culture. The specific capture and desorption of virions were studied at different pHs. ENMs were characterized by scanning electron microscopy and FTIR. Atomic force microscopy along with UV-vis and electrochemical impedance spectroscopies was used to monitor the antibody immobilization, ZIKV capture, and elution processes. Our results show that 14.2 mg (0.25 cm3) of ENM can capture 38.7 ± 2.5 µg of ZIKV with a desorption rate of 99.97% (38.29 ± 2.7 µg ZIKV), which is reusable for at least three times. Therefore, the capture capacity (micrograms of ZIKV captured per milligram of ENM) of polyaniline-hierarchized mats was 2.72 µg ZIKV/mg. The impedance LOD value was determined to be 2.76 µg of ZIKV particles (approximately 6.6 × 103 PFU/mL). As a result, we present a fast small-scale purification system that can simultaneously monitor ZIKV electrochemically and optically.


Assuntos
Alginatos/química , Compostos de Anilina/química , Técnicas Biossensoriais/métodos , Nanofibras/química , Carga Viral/métodos , Zika virus/isolamento & purificação , Animais , Anticorpos Imobilizados/imunologia , Anticorpos Antivirais/imunologia , Sangue/virologia , Chlorocebus aethiops , Técnicas Eletroquímicas , Hidrogéis/química , Imunoensaio/métodos , Limite de Detecção , Células Vero , Zika virus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...