Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(22): 25081-25091, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32340439

RESUMO

A new organic small-molecule family comprising tetracyanoquinodimethane-substituted quinoidal dithioalky(SR)terthiophenes (DSTQs) (DSTQ-6 (1); SR = SC6H13, DSTQ-10 (2); SR = SC10H21, DSTQ-14 (3); SR = SC10H21) was synthesized and contrasted with a nonthioalkylated analogue (DRTQ-14 (4); R = C14H29). The physical, electrochemical, and electrical properties of these new compounds are thoroughly investigated. Optimized geometries obtained from density functional theory calculations and single-crystal X-ray diffraction reveal the planarity of the SR-containing DSTQ core. DSTQs pack in a slipped π-π stacked two-dimensional arrangement, with a short intermolecular stacking distance of 3.55 Å and short intermolecular S···N contacts of 3.56 Å. Thin-film morphological analysis by grazing incident X-ray diffraction reveals that all DSTQ molecules are packed in an edge-on fashion on the substrate. The favorable molecular packing, the high core planarity, and very low lowest unoccupied molecular orbital (LUMO) energy level (-4.2 eV) suggest that DSTQs could be electron-transporting semiconductors. Organic field-effect transistors based on solution-sheared DSTQ-14 exhibit the highest electron mobility of 0.77 cm2 V-1 s-1 with good ambient stability, which is the highest value reported to date for such a solution process terthiophene-based small molecular semiconductor. These results demonstrate that the device performance of solution-sheared DSTQs can be improved by side chain engineering.

2.
Chem Commun (Camb) ; 55(68): 10116-10119, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31385576

RESUMO

Molecular resolution STM is used to study the spatial structure and chirality of adsorbed Δ4,4-dicyclopenta[2,1-b:3,4-b]-dithiophene (TTE) on an Au(111) electrode, revealing an ordered, racemate adlayer made of homogeneously mixed R- and S-TTE on the (1 × 1) substrate and patches of R- or S-only TTE on the reconstructed Au(111) at more and less positive potentials.

3.
J Am Chem Soc ; 140(1): 388-393, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29211458

RESUMO

Developing dopant-free hole transporting layers (HTLs) is critical in achieving high-performance and robust state-of-the-art perovskite photovoltaics, especially for the air-sensitive tin-based perovskite systems. The commonly used HTLs require hygroscopic dopants and additives for optimal performance, which adds extra cost to manufacturing and limits long-term device stability. Here we demonstrate the use of a novel tetrakis-triphenylamine (TPE) small molecule prepared by a facile synthetic route as a superior dopant-free HTL for lead-free tin-based perovskite solar cells. The best-performing tin iodide perovskite cells employing the novel mixed-cation ethylenediammonium/formamidinium with the dopant-free TPE HTL achieve a power conversion efficiency as high as 7.23%, ascribed to the HTL's suitable band alignment and excellent hole extraction/collection properties. This efficiency is one of the highest reported so far for tin halide perovskite systems, highlighting potential application of TPE HTL material in low-cost high-performance tin-based perovskite solar cells.

4.
Adv Mater ; 29(35)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28707742

RESUMO

New 3,3'-dithioalkyl-2,2'-bithiophene (SBT)-based small molecular and polymeric semiconductors are synthesized by end-capping or copolymerization with dithienothiophen-2-yl units. Single-crystal, molecular orbital computations, and optical/electrochemical data indicate that the SBT core is completely planar, likely via S(alkyl)⋯S(thiophene) intramolecular locks. Therefore, compared to semiconductors based on the conventional 3,3'-dialkyl-2,2'-bithiophene, the resulting SBT systems are planar (torsional angle <1°) and highly π-conjugated. Charge transport is investigated for solution-sheared films in field-effect transistors demonstrating that SBT can enable good semiconducting materials with hole mobilities ranging from ≈0.03 to 1.7 cm2 V-1 s-1 . Transport difference within this family is rationalized by film morphology, as accessed by grazing incidence X-ray diffraction experiments.

5.
Chem Commun (Camb) ; 53(43): 5898-5901, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28513666

RESUMO

Three new organic semiconductors with alkyl chain-substituted tetrathienoacene (TTAR) as the central core and both ends capped with thiophene (DT-TTAR), thienothiophene (DTT-TTAR) and dithienothiophene (DDTT-TTAR) have been synthesized and characterized for organic field effect transistor (OFET) applications. A hole mobility of 0.81 cm2 V-1 s-1 was achieved for the DDTT-TTAR film, which represents the highest mobility yet found for a solution-processable p-type TTAR-based small molecular semiconductors.

6.
Chem Asian J ; 10(8): 1640-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25930006

RESUMO

Three new donor-π-donor (D-π-D) tetrathienoacene (thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]thiophene (TTA))-cored chromophores, end-functionalized with electron-donating triphenylamine (TPA) groups, were developed and characterized for their two-photon-related properties by using both nano- and femtosecond laser pulses as the probing tools. TTA-based chromophores exhibit stronger and more widely dispersed two-photon absorption (2PA) than those of dithienothiophene (DTT)-based congeners. As a consequence, the bithiophene-conjugated TTA chromophore exhibits the highest maximum 2PA cross-section value (up to 2500 GM) with good thermal stability, and thus, it is the best performing two-photon chromophore among the studied model compounds. The bithiophene-conjugated DTT analogue exhibits the second highest maximum two-photon absorptivity of 1950 GM, which is nearly 7 times larger than that of previously reported DTT-based chromophores.

7.
J Am Chem Soc ; 137(13): 4414-23, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25768124

RESUMO

A new series of metal-free organic chromophores (TPA-TTAR-A (1), TPA-T-TTAR-A (2), TPA-TTAR-T-A (3), and TPA-T-TTAR-T-A (4)) are synthesized for application in dye-sensitized solar cells (DSSC) based on a donor-π-bridge-acceptor (D-π-A) design. Here a simple triphenylamine (TPA) moiety serves as the electron donor, a cyanoacrylic acid as the electron acceptor and anchoring group, and a novel tetrathienoacene (TTA) as the π-bridge unit. Because of the extensively conjugated TTA π-bridge, these dyes exhibit high extinction coefficients (4.5-5.2 × 10(4) M(-1) cm(-1)). By strategically inserting a thiophene spacer on the donor or acceptor side of the molecules, the electronic structures of these TTA-based dyes can be readily tuned. Furthermore, addition of a thiophene spacer has a significant influence on the dye orientation and self-assembly modality on TiO2 surfaces. The insertion of a thiophene between the π-bridge and the cyanoacrylic acid anchoring group in TPA-TTAR-T-A (dye 3) promotes more vertical dye orientation and denser packing on TiO2 (molecular footprint = 79 Å(2)), thus enabling optimal dye loading. Using dye 3, a DSSC power conversion efficiency (PCE) of 10.1% with Voc = 0.833 V, Jsc = 16.5 mA/cm(2), and FF = 70.0% is achieved, among the highest reported to date for metal-free organic DSSC sensitizers using an I(-)/I3(-) redox shuttle. Photophysical measurements on dye-grafted TiO2 films reveal that the additional thiophene unit in dye 3 enhances the electron injection efficiency, in agreement with the high quantum efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...