Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 123(1): 014508, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16035856

RESUMO

The structural aspects of xCs2O-(1-x)B2O3 glasses have been investigated by molecular dynamics as functions of Cs2O content (x=0.2, 0.3, and 0.4) and temperature (T=300 and 1250 K). The tetrahedral (BØ4-) and triangular (BØ3,BØ2O-, and BØO2 (2-)) short-range order borate units were found to be the structure-building entities of the simulated glasses [Ø=bridging oxygen (BO) and O-=nonbridging oxygen (NBO) atom]. The increase of Cs2O content results in the progressive increase of the NBO-containing triangle population at the expense of the BO4- tetrahedral units. The same effect is caused by temperature increase at a fixed Cs2O content, and this was associated with the "fragile" characteristics of alkali borate glasses. A comparison of simulated Cs and Li borates showed very similar structures at x=0.2, but dissimilar ones when the alkali content exceeds this composition. In particular, for x>0.2 Cs borates exhibit a preference for NBO formation relative to Li borates. Differences in the microstructure of sites hosting Cs ions were found, and this permits their classification into bridging (b type) and nonbridging type (nb type) of sites. b-type sites consist exclusively of BO atoms, while both BO and NBO atoms participate in nb-type sites. These differences in Cs-site local bonding characteristics were found to be reflected on the Cs-O(site) vibration frequencies. Also, the computed Cs-O vibrational responses for simulated Cs borates were found to compare well with experimental far-infrared spectra.

2.
J Chem Phys ; 120(16): 7689-95, 2004 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15267680

RESUMO

Molecular dynamics simulations are carried out in xLi2O-(1-x)B2O3 glasses (x=0.2-0.6) at T=1250 K, where cluster size distributions for Li cations and nonbridging oxygen (NBO) atoms are calculated. The existence of percolating clusters above x=0.3 places the percolation threshold between x=0.3 and 0.4 for the system under investigation, which is consistent with the abrupt increase of the diffusion coefficient of Li cations observed at x=0.4. It is also shown that the clusters of Li cations consist mainly of Li atoms found in the vicinity of NBO atoms. This result explains the higher mobility exhibited by this type of cations compared to the mobility of Li cations in the vicinity of bridging oxygen atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...