Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970561

RESUMO

The seeded growth of one type of nanoparticle on the surface of another is foundational to synthesizing many multifunctional nanostructures. High-entropy nanoparticles that randomly incorporate five or more elements offer enhanced properties due to synergistic interactions. Incorporating high-entropy nanoparticles into seeded growth platforms is essential for merging their unique properties with the functional enhancements that arise from particle-particle interactions. However, the complex compositions of high-entropy materials complicate the seeded growth process due to competing particle growth and chemical reactivity pathways. Here, we design and synthesize a 36-member nanoparticle library to identify and disentangle these competitive interactions, ultimately defining chemical characteristics that underpin the seeded growth of high-entropy alloys on high-entropy metal sulfide nanoparticles. As a model system, we focus on (Cu,Zn,Co,In,Ga)S-SnPdPtRhIr, which combines a high-entropy metal sulfide semiconductor with a high-entropy alloy catalyst. We study the seeded growth of all possible pairwise combinations of Sn, Pd, Pt, Rh, Ir, and SnPdPtRhIr on the metal sulfides Cu1.8S, ZnS, Co9S8, CuInS2, CuGaS2, and (Cu,Zn,Co,In,Ga)S, which have comparable morphologies and sizes. Through these studies, we uncover unexpected chemical reactivities, including cation exchange, redox reactions, and diffusion. Reaction temperature, threshold reduction potentials, metal/sulfide chemical reactivity, and the relative strengths of the various bonds that could be formed during particle growth emerge as the primary factors that underpin seeded growth. Finally, we disentangle these competitive and synergistic chemical reactivities to generate a reactivity map that provides practical guidelines for achieving seeded growth in compositionally complex systems.

2.
J Am Chem Soc ; 143(21): 7915-7919, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34019412

RESUMO

Achieving phase selectivity during nanoparticle synthesis is important because crystal structure and composition influence reactivity, growth, and properties. Cation exchange provides a pathway for targeting desired phases by modifying composition while maintaining crystal structure. However, our understanding of how to selectively target different phases in the same system is limited. Here, we demonstrate morphology-dependent phase selectivity for wurtzite (wz) CoS, which is hcp, vs pentlandite Co9S8, which is ccp, during Co2+ exchange of roxbyite Cu1.8S plates, spheres, and rods. The plates form wz-CoS, the spheres form both wz-CoS and Co9S8, and the rods form Co9S8. The plates, spheres, and rods have nearly identical widths but increase in length in the direction that the close-packed planes stack, which influences the ability of the anions to shift from hcp to ccp during cation exchange. This morphology-dependent behavior, which correlates with the number of stacked close-packed planes, relies on an anion sublattice rearrangement that is concomitant with cation exchange, thereby providing a unique pathway by which crystal structure can be controlled and phase selectivity can be achieved during nanocrystal cation exchange.

3.
Inorg Chem ; 60(7): 4278-4290, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33661620

RESUMO

Colloidal hybrid nanoparticles have generated considerable attention in the inorganic nanomaterials community. The combination of different materials within a single nanoparticle can lead to synergistic properties that can enable new properties, new applications, and the discovery of new phenomena. As such, methodologies for the synthesis of hybrid nanoparticles that integrate metal-metal, metal chalcogenide, metal oxide, and oxide-chalcogenide domains have been extensively reported in the literature. However, colloidal hybrid nanoparticles containing metal phosphide domains are rare, despite being attractive systems for their potentially unique catalytic, photocatalytic, and optoelectronic properties. In this Forum Article, we report a study of the synthesis of colloidal hybrid nanoparticles that couple the metal phosphides Ni2P and CoxPy with Au, Ag, PbS, and CdS using heterogeneous seeded-growth reactions. We also investigate the transformation of Au-Ni heterodimers to Au-Ni2P, where phosphidation of preformed metal-metal hybrid nanoparticles offers an alternative route to metal phosphide systems. We also study sequential cation-exchange reactions to target specific metal phosphide hybrids, i.e., the transformation of Ni2P-PbS into Ni2P-Ag2S and then Ni2P-CdS. Throughout all of these pathways, the accompanying discussion emphasizes the synthetic rationale, as well as the challenges in synthesis and characterization that are unique to these systems. In particular, the observation of oxide shells that surround the phosphide domains has implications for the potential photocatalytic applications of these hybrid nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...