Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 22(10): 2343-2357, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26685254

RESUMO

Graphs are used to model relations between objects, where these objects can be grouped hierarchically based on their connectivity. In many applications, the relations change over time and so does the hierarchical group structure. We developed a visualization technique that supports the analysis of the topology and the hierarchical group structure of a dynamic graph and the tracking of changes over time. Each graph of a sequence is visualized by an adjacency matrix, where the hierarchical group structure is encoded within the matrix using indentation and nested contours, complemented by icicle plots attached to the matrices. The density within and between subgroups of the hierarchy is represented within the matrices using a gray scale. To visualize changes, transitions and dissimilarities between the hierarchically structured graphs are shown using a flow metaphor and color coding. The design of our visualization technique allows us to show more than one hierarchical group structure of the same graph by stacking the sequences, where hierarchy comparison is supported not only within but also between sequences. To improve the readability, we minimize the number of crossing curves within and between sequences based on a sorting algorithm that sweeps through the sequences of hierarchies.

2.
BMC Bioinformatics ; 16: 135, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25925016

RESUMO

BACKGROUND: The interpretation of the results from genome-scale experiments is a challenging and important problem in contemporary biomedical research. Biological networks that integrate experimental results with existing knowledge from biomedical databases and published literature can provide a rich resource and powerful basis for hypothesizing about mechanistic explanations for observed gene-phenotype relationships. However, the size and density of such networks often impede their efficient exploration and understanding. RESULTS: We introduce a visual analytics approach that integrates interactive filtering of dense networks based on degree-of-interest functions with attribute-based layouts of the resulting subnetworks. The comparison of multiple subnetworks representing different analysis facets is facilitated through an interactive super-network that integrates brushing-and-linking techniques for highlighting components across networks. An implementation is freely available as a Cytoscape app. CONCLUSIONS: We demonstrate the utility of our approach through two case studies using a dataset that combines clinical data with high-throughput data for studying the effect of ß-blocker treatment on heart failure patients. Furthermore, we discuss our team-based iterative design and development process as well as the limitations and generalizability of our approach.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Colesterol/metabolismo , Gráficos por Computador , Bases de Dados Factuais , Redes Reguladoras de Genes , Insuficiência Cardíaca/genética , Software , Proteínas de Transferência de Ésteres de Colesterol/genética , Mineração de Dados , Perfilação da Expressão Gênica , Insuficiência Cardíaca/tratamento farmacológico , Humanos
3.
IEEE Trans Vis Comput Graph ; 19(12): 2486-95, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24051815

RESUMO

An important feature of networks for many application domains is their community structure. This is because objects within the same community usually have at least one property in common. The investigation of community structure can therefore support the understanding of object attributes from the network topology alone. In real-world systems, objects may belong to several communities at the same time, i.e., communities can overlap. Analyzing fuzzy community memberships is essential to understand to what extent objects contribute to different communities and whether some communities are highly interconnected. We developed a visualization approach that is based on node-link diagrams and supports the investigation of fuzzy communities in weighted undirected graphs at different levels of detail. Starting with the network of communities, the user can continuously drill down to the network of individual nodes and finally analyze the membership distribution of nodes of interest. Our approach uses layout strategies and further visual mappings to graphically encode the fuzzy community memberships. The usefulness of our approach is illustrated by two case studies analyzing networks of different domains: social networking and biological interactions. The case studies showed that our layout and visualization approach helps investigate fuzzy overlapping communities. Fuzzy vertices as well as the different communities to which they belong can be easily identified based on node color and position.


Assuntos
Algoritmos , Inteligência Artificial , Lógica Fuzzy , Aumento da Imagem/métodos , Modelos Estatísticos , Interface Usuário-Computador , Simulação por Computador
4.
BMC Bioinformatics ; 14 Suppl 19: S2, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564335

RESUMO

BACKGROUND: Mathematical models are nowadays widely used to describe biochemical reaction networks. One of the main reasons for this is that models facilitate the integration of a multitude of different data and data types using parameter estimation. Thereby, models allow for a holistic understanding of biological processes. However, due to measurement noise and the limited amount of data, uncertainties in the model parameters should be considered when conclusions are drawn from estimated model attributes, such as reaction fluxes or transient dynamics of biological species. METHODS AND RESULTS: We developed the visual analytics system iVUN that supports uncertainty-aware analysis of static and dynamic attributes of biochemical reaction networks modeled by ordinary differential equations. The multivariate graph of the network is visualized as a node-link diagram, and statistics of the attributes are mapped to the color of nodes and links of the graph. In addition, the graph view is linked with several views, such as line plots, scatter plots, and correlation matrices, to support locating uncertainties and the analysis of their time dependencies. As demonstration, we use iVUN to quantitatively analyze the dynamics of a model for Epo-induced JAK2/STAT5 signaling. CONCLUSION: Our case study showed that iVUN can be used to perform an in-depth study of biochemical reaction networks, including attribute uncertainties, correlations between these attributes and their uncertainties as well as the attribute dynamics. In particular, the linking of different visualization options turned out to be highly beneficial for the complex analysis tasks that come with the biological systems as presented here.


Assuntos
Modelos Biológicos , Modelos Químicos , Incerteza , Biologia Computacional/métodos , Gráficos por Computador , Redes e Vias Metabólicas , Transdução de Sinais
5.
BMC Bioinformatics ; 13 Suppl 8: S2, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22607364

RESUMO

In the search for single-nucleotide polymorphisms which influence the observable phenotype, genome wide association studies have become an important technique for the identification of associations between genotype and phenotype of a diverse set of sequence-based data. We present a methodology for the visual assessment of single-nucleotide polymorphisms using interactive hierarchical aggregation techniques combined with methods known from traditional sequence browsers and cluster heatmaps. Our tool, the interactive Hierarchical Aggregation Table (iHAT), facilitates the visualization of multiple sequence alignments, associated metadata, and hierarchical clusterings. Different color maps and aggregation strategies as well as filtering options support the user in finding correlations between sequences and metadata. Similar to other visualizations such as parallel coordinates or heatmaps, iHAT relies on the human pattern-recognition ability for spotting patterns that might indicate correlation or anticorrelation. We demonstrate iHAT using artificial and real-world datasets for DNA and protein association studies as well as expression Quantitative Trait Locus data.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Software , Análise por Conglomerados , Genótipo , Humanos
6.
BMC Bioinformatics ; 13 Suppl 8: S8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22607587

RESUMO

In 2011, the IEEE VisWeek conferences inaugurated a symposium on Biological Data Visualization. Like other domain-oriented Vis symposia, this symposium's purpose was to explore the unique characteristics and requirements of visualization within the domain, and to enhance both the Visualization and Bio/Life-Sciences communities by pushing Biological data sets and domain understanding into the Visualization community, and well-informed Visualization solutions back to the Biological community. Amongst several other activities, the BioVis symposium created a data analysis and visualization contest. Unlike many contests in other venues, where the purpose is primarily to allow entrants to demonstrate tour-de-force programming skills on sample problems with known solutions, the BioVis contest was intended to whet the participants' appetites for a tremendously challenging biological domain, and simultaneously produce viable tools for a biological grand challenge domain with no extant solutions. For this purpose expression Quantitative Trait Locus (eQTL) data analysis was selected. In the BioVis 2011 contest, we provided contestants with a synthetic eQTL data set containing real biological variation, as well as a spiked-in gene expression interaction network influenced by single nucleotide polymorphism (SNP) DNA variation and a hypothetical disease model. Contestants were asked to elucidate the pattern of SNPs and interactions that predicted an individual's disease state. 9 teams competed in the contest using a mixture of methods, some analytical and others through visual exploratory methods. Independent panels of visualization and biological experts judged entries. Awards were given for each panel's favorite entry, and an overall best entry agreed upon by both panels. Three special mention awards were given for particularly innovative and useful aspects of those entries. And further recognition was given to entries that correctly answered a bonus question about how a proposed "gene therapy" change to a SNP might change an individual's disease status, which served as a calibration for each approaches' applicability to a typical domain question. In the future, BioVis will continue the data analysis and visualization contest, maintaining the philosophy of providing new challenging questions in open-ended and dramatically underserved Bio/Life Sciences domains.


Assuntos
Simulação por Computador , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Encéfalo/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
7.
IEEE Trans Vis Comput Graph ; 17(12): 2344-53, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22034355

RESUMO

We present a novel dynamic graph visualization technique based on node-link diagrams. The graphs are drawn side-byside from left to right as a sequence of narrow stripes that are placed perpendicular to the horizontal time line. The hierarchically organized vertices of the graphs are arranged on vertical, parallel lines that bound the stripes; directed edges connect these vertices from left to right. To address massive overplotting of edges in huge graphs, we employ a splatting approach that transforms the edges to a pixel-based scalar field. This field represents the edge densities in a scalable way and is depicted by non-linear color mapping. The visualization method is complemented by interaction techniques that support data exploration by aggregation, filtering, brushing, and selective data zooming. Furthermore, we formalize graph patterns so that they can be interactively highlighted on demand. A case study on software releases explores the evolution of call graphs extracted from the JUnit open source software project. In a second application, we demonstrate the scalability of our approach by applying it to a bibliography dataset containing more than 1.5 million paper titles from 60 years of research history producing a vast amount of relations between title words.

8.
Bioinformatics ; 27(11): 1573-4, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21471016

RESUMO

SUMMARY: Contact maps are a valuable visualization tool in structural biology. They are a convenient way to display proteins in two dimensions and to quickly identify structural features such as domain architecture, secondary structure and contact clusters. We developed a tool called CMView which integrates rich contact map analysis with 3D visualization using PyMol. Our tool provides functions for contact map calculation from structure, basic editing, visualization in contact map and 3D space and structural comparison with different built-in alignment methods. A unique feature is the interactive refinement of structural alignments based on user selected substructures. AVAILABILITY: CMView is freely available for Linux, Windows and MacOS. The software and a comprehensive manual can be downloaded from http://www.bioinformatics.org/cmview/. The source code is licensed under the GNU General Public License.


Assuntos
Conformação Proteica , Software , Gráficos por Computador , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...