Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Sel Evol ; 48(1): 94, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27899075

RESUMO

BACKGROUND: Rainbow trout is an important aquaculture species, which has a worldwide distribution across various production environments. The diverse locations of trout farms involve remarkable variation in environmental factors such as water temperature, which is of major importance for the performance of fish. Thus, robust fish that could thrive under different and suboptimal thermal conditions is a desirable goal for trout breeding. Using a split-family experimental design (40 full-/half-sib groups) for a rainbow trout population derived from the Finnish national breeding program, we studied how two different rearing temperatures (14 and 20 °C) affect feed intake, growth rate and feed conversion ratio in 1-year-old fish. Furthermore, we quantified the additive genetic (co-)variation for daily growth coefficient (DGC) and its thermal sensitivity (TS), defined as the slope of the growth reaction norm between the two temperatures. RESULTS: The fish showed consistently lower feed intake, faster growth and better feed conversion ratio at the lower temperature. Heritability of TS of DGC was moderate ([Formula: see text]). The co-heritability parameter derived from selection index theory, which describes the heritable variance of TS, was negative when the intercept was placed at the lower temperature (-0.28). This resulted in moderate accuracy of selection. At the higher temperature, co-heritability of TS was positive (0.20). The genetic correlation between DGC and its TS was strongly negative (-0.64) when the intercept was at the lower temperature and positive (0.38) but not significantly different from zero at the higher temperature. CONCLUSIONS: The considerable amount of genetic variation in TS of growth indicates a potential for selection response and thus for targeted genetic improvement in TS. The negative genetic correlation between DGC and its TS suggests that selection for high growth rate at the lower temperature will result in more temperature-sensitive fish. Instead, the correlated response of TS is less pronounced if the selection for a higher DGC occurred at the higher temperature. It seems possible to control the correlated genetic change of TS while selecting for fast growth across environments, especially if measurements from both environments are available and breeding values for reaction norm slope are directly included in the selection index.


Assuntos
Estudos de Associação Genética , Variação Genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/genética , Característica Quantitativa Herdável , Temperatura , Sensação Térmica/genética , Animais
2.
Genet Sel Evol ; 47: 46, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25986847

RESUMO

BACKGROUND: When rainbow trout from a single breeding program are introduced into various production environments, genotype-by-environment (GxE) interaction may occur. Although growth and its uniformity are two of the most important traits for trout producers worldwide, GxE interaction on uniformity of growth has not been studied. Our objectives were to quantify the genetic variance in body weight (BW) and its uniformity and the genetic correlation (rg) between these traits, and to investigate the degree of GxE interaction on uniformity of BW in breeding (BE) and production (PE) environments using double hierarchical generalized linear models. Log-transformed data were also used to investigate whether the genetic variance in uniformity of BW, GxE interaction on uniformity of BW, and rg between BW and its uniformity were influenced by a scale effect. RESULTS: Although heritability estimates for uniformity of BW were low and of similar magnitude in BE (0.014) and PE (0.012), the corresponding coefficients of genetic variation reached 19 and 21%, which indicated a high potential for response to selection. The genetic re-ranking for uniformity of BW (rg = 0.56) between BE and PE was moderate but greater after log-transformation, as expressed by the low rg (-0.08) between uniformity in BE and PE, which indicated independent genetic rankings for uniformity in the two environments when the scale effect was accounted for. The rg between BW and its uniformity were 0.30 for BE and 0.79 for PE but with log-transformed BW, these values switched to -0.83 and -0.62, respectively. CONCLUSIONS: Genetic variance exists for uniformity of BW in both environments but its low heritability implies that a large number of relatives are needed to reach even moderate accuracy of selection. GxE interaction on uniformity is present for both environments and sib-testing in PE is recommended when the aim is to improve uniformity across environments. Positive and negative rg between BW and its uniformity estimated with original and log-transformed BW data, respectively, indicate that increased BW is genetically associated with increased variance in BW but with a decrease in the coefficient of variation. Thus, the scale effect substantially influences the genetic parameters of uniformity, especially the sign and magnitude of its rg.


Assuntos
Peso Corporal/genética , Interação Gene-Ambiente , Variação Genética , Oncorhynchus mykiss/genética , Animais , Oncorhynchus mykiss/crescimento & desenvolvimento , Fenótipo
3.
Evol Appl ; 5(7): 732-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23144659

RESUMO

Explanations for positive and negative genetic correlations between growth and fitness traits are essential for life-history theory and selective breeding. Here, we test whether growth and survival display genetic trade-off. Furthermore, we assess the potential of third-party traits to explain observed genetic associations. First, we estimated genetic correlations of growth and survival of rainbow trout. We then explored whether these associations are explained by genetic correlations with health, body composition and maturity traits. Analysis included 14 traits across life stages and environments. Data were recorded from 249 166 individuals belonging to 10 year classes of a pedigreed population. The results revealed that rapid growth during grow-out was genetically associated with enhanced survival (mean r(G) = 0.17). This resulted because genotypes with less nematode caused cataract grew faster and were more likely to survive. Fingerling survival was not genetically related to weight or to grow-out survival. Instead, rapid fingerling growth made fish prone to deformations (r(G) = 0.18). Evolutionary genetics provides a theoretical framework to study variation in genetic correlations. This study demonstrates that genetic correlation patterns of growth and survival can be explained by a set of key explanatory traits recorded at different life stages and that these traits can be simultaneously improved by selective breeding.

4.
PLoS One ; 7(6): e38766, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701708

RESUMO

Microenvironmental sensitivity of a genotype refers to the ability to buffer against non-specific environmental factors, and it can be quantified by the amount of residual variation in a trait expressed by the genotype's offspring within a (macro)environment. Due to the high degree of polymorphism in behavioral, growth and life-history traits, both farmed and wild salmonids are highly susceptible to microenvironmental variation, yet the heritable basis of this characteristic remains unknown. We estimated the genetic (co)variance of body weight and its residual variation in 2-year-old rainbow trout (Oncorhynchus mykiss) using a multigenerational data of 45,900 individuals from the Finnish national breeding programme. We also tested whether or not microenvironmental sensitivity has been changed as a correlated genetic response when genetic improvement for growth has been practiced over five generations. The animal model analysis revealed the presence of genetic heterogeneity both in body weight and its residual variation. Heritability of residual variation was remarkably lower (0.02) than that for body weight (0.35). However, genetic coefficient of variation was notable in both body weight (14%) and its residual variation (37%), suggesting a substantial potential for selection responses in both traits. Furthermore, a significant negative genetic correlation (-0.16) was found between body weight and its residual variation, i.e., rapidly growing genotypes are also more tolerant to perturbations in microenvironment. The genetic trends showed that fish growth was successfully increased by selective breeding (an average of 6% per generation), whereas no genetic change occurred in residual variation during the same period. The results imply that genetic improvement for body weight does not cause a concomitant increase in microenvironmental sensitivity. For commercial production, however, there may be high potential to simultaneously improve weight gain and increase its uniformity if both criteria are included in a selection index.


Assuntos
Peso Corporal/genética , Meio Ambiente , Padrões de Herança/genética , Modelos Biológicos , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/genética , Seleção Genética , Animais , Cruzamento/métodos , Cruzamento/estatística & dados numéricos , Finlândia , Funções Verossimilhança , Linhagem
5.
Genet Res (Camb) ; 92(1): 1-11, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20196893

RESUMO

Survival from birth to a reproductive adult is a challenge that only robust individuals resistant to a variety of mortality factors will overcome. To assess whether survival traits share genetic architecture throughout the life cycle, we estimated genetic correlations for survival within fingerling stage, and across egg, fingerling and grow-out stages in farmed rainbow trout. Genetic parameters of survival at three life cycle stages were estimated for 249 166 individuals originating from ten year classes of a pedigreed population. Despite being an important fitness component, survival traits harboured significant but modest amount of genetic variation (h2=0.07-0.27). Weak associations between survival during egg-fry and fingerling periods, between early and late fingerling periods (rG=0.30) and generally low genetic correlations between fingerling and grow-out survival (mean rG=0.06) suggested that life-stage specific survival traits are best regarded as separate traits. However, in the sub-set of data with detailed time of death records, positive genetic correlations between early and late fingerling survival (rG=0.89) showed that during certain years the best genotypes in the early period were also among the best in the late period. That survival across fingerling period can be genetically the same, trait was indicated also by only slightly higher heritability (h2=0.15) estimated with the survival analysis of time to death during fingerling period compared to the analysis treating fingerling survival as a binary character (h2=0.11). The results imply that (1) inherited resistance against unknown mortality factors exists, but (2) ranking of genotypes changes across life stages.


Assuntos
Estágios do Ciclo de Vida/genética , Oncorhynchus mykiss/genética , Animais , Feminino , Genes , Variação Genética , Genótipo , Fenótipo , Reprodução/genética , Análise de Sobrevida
6.
Genetics ; 180(1): 507-16, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18757927

RESUMO

As a fitness trait, survival is assumed to exhibit low heritability due to strong selection eroding genetic variation and/or spatio-temporal variation in mortality agents reducing genetic and increasing residual variation. The latter phenomenon in particular may contribute to low heritability in multigeneration data, even if certain cohorts exhibit significant genetic variation. Analysis of survival data from 10 year classes of rainbow trout reared at three test stations showed that treating survival as a single trait across all generations resulted in low heritability (h2 = 0.08-0.17). However, when heritabilities were estimated from homogeneous generation and test station-specific cohorts, a wide range of heritability values was revealed (h2 = 0.04-0.71). Of 64 genetic correlations between different cohorts, 20 were positive, but 16 were significantly negative, confirming that genetic architecture of survival is not stable across generations and environments. These results reveal the existence of hidden genetic variation for survival and demonstrate that treating survival as one trait over several generations may not reveal its true genetic architecture. Negative genetic correlations between cohorts indicate that overall survival has limited potential to predict general resistance, and care should be taken when using it as selection criterion.


Assuntos
Evolução Molecular , Oncorhynchus mykiss/genética , Animais , Estudos de Coortes , Cruzamentos Genéticos , Variação Genética , Genética Populacional , Modelos Genéticos , Seleção Genética , Fatores de Tempo , Resultado do Tratamento
7.
Oecologia ; 152(2): 287-98, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17356813

RESUMO

Plant monocultures are commonly believed to be more susceptible to herbivore attacks than stands composed of several plant species. However, few studies have experimentally tested the effects of tree species diversity on herbivory. In this paper, we present a meta-analysis of uniformly collected data on insect herbivore abundance and damage on three tree species (silver birch, black alder and sessile oak) from seven long-term forest diversity experiments in boreal and temperate forest zones. Our aim was to compare the effects of forest diversity on herbivores belonging to different feeding guilds and inhabiting different tree species. At the same time we also examined the variation in herbivore responses due to tree age and sampling period within the season, the effects of experimental design (plot size and planting density) and the stability of herbivore responses over time. Herbivore responses varied significantly both among insect feeding guilds and among host tree species. Among insect feeding guilds, only leaf miner densities were consistently lower and less variable in mixed stands as compared to tree monocultures regardless of the host tree species. The responses of other herbivores to forest diversity depended largely on host tree species. Insect herbivory on birch was significantly lower in mixtures than in birch monocultures, whereas insect herbivory on oak and alder was higher in mixtures than in oak and alder monocultures. The effects of tree species diversity were also more pronounced in older trees, in the earlier part of the season, at larger plots and at lower planting density. Overall our results demonstrate that forest diversity does not generally and uniformly reduce insect herbivory and suggest instead that insect herbivore responses to forest diversity are highly variable and strongly dependent on the host tree species and other stand characteristics as well as on the type of the herbivore.


Assuntos
Biodiversidade , Comportamento Alimentar/fisiologia , Insetos/fisiologia , Árvores/classificação , Árvores/fisiologia , Animais , Densidade Demográfica , Fatores de Tempo , Árvores/parasitologia
8.
Oecologia ; 142(1): 90-7, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15322903

RESUMO

Numerous studies conducted in agro-ecosystems support the enemies hypothesis, which states that predators and parasites are more efficient in controlling pest densities in polycultures than in monocultures. Few similar studies, however, have been conducted in forest ecosystems, and we do not yet have evidence as to whether the enemies hypothesis holds true in forests. In a 2-year study, we investigated whether the survival of autumnal moth ( Epirrita autumnata) larvae and pupae differs between silver birch monocultures and two-species mixtures of birch with black alder, Norway spruce and Scots pine. We placed young larvae on birch saplings and monitored their survival until the end of the larval period, when we checked whether they had been parasitized. After the larvae had pupated, pupal survival was tested in a field trial. In 2002, the larvae disappeared earlier and their overall survival was lower in birch-pine mixtures than in other stand types. In 2003, survival probability was lowest in birch-pine stands only during the first week and there were no differences between stands in overall survival. Larval parasitism was not affected by tree species composition. Pupal weight and pupal survival were likewise not affected by stand type. Among the predators, wood ants were more abundant on birches growing in birch-pine mixtures than in other stand types probably because colonies of myrmecophilic aphids were common on pines. In contrast, spider numbers did not differ between stand types. Ant exclusion by means of a glue ring around the birch trunk increased larval survival, indicating that ants are important predators of the autumnal moth larvae; differences in larval survival between stands are probably due to differential ant predation. Our results provide only partial support for the enemies hypothesis, and suggest that it is both tree species composition and species diversity which affect herbivore survival and predation.


Assuntos
Ecossistema , Modelos Biológicos , Mariposas/fisiologia , Árvores/fisiologia , Análise de Variância , Animais , Formigas/fisiologia , Finlândia , Larva/parasitologia , Larva/fisiologia , Mariposas/parasitologia , Comportamento Predatório/fisiologia , Aranhas/fisiologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...