Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucleic Acids ; 2013: 763945, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24490055

RESUMO

The present work is a pioneer study specifically addressing the aquaporin transcripts in sugarcane transcriptomes. Representatives of the four aquaporin subfamilies (PIP, TIP, SIP, and NIP), already described for higher plants, were identified. Forty-two distinct aquaporin isoforms were expressed in four HT-SuperSAGE libraries from sugarcane roots of drought-tolerant and -sensitive genotypes, respectively. At least 10 different potential aquaporin isoform targets and their respective unitags were considered to be promising for future studies and especially for the development of molecular markers for plant breeding. From those 10 isoforms, four (SoPIP2-4, SoPIP2-6, OsPIP2-4, and SsPIP1-1) showed distinct responses towards drought, with divergent expressions between the bulks from tolerant and sensitive genotypes, when they were compared under normal and stress conditions. Two targets (SsPIP1-1 and SoPIP1-3/PIP1-4) were selected for validation via RT-qPCR and their expression patterns as detected by HT-SuperSAGE were confirmed. The employed validation strategy revealed that different genotypes share the same tolerant or sensitive phenotype, respectively, but may use different routes for stress acclimation, indicating the aquaporin transcription in sugarcane to be potentially genotype-specific.

2.
ScientificWorldJournal ; 2012: 821062, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629208

RESUMO

In the scope of the present work, four SuperSAGE libraries have been generated, using bulked root tissues from four drought-tolerant accessions as compared with four bulked sensitive genotypes, aiming to generate a panel of differentially expressed stress-responsive genes. Both groups were submitted to 24 hours of water deficit stress. The SuperSAGE libraries produced 8,787,315 tags (26 bp) that, after exclusion of singlets, allowed the identification of 205,975 unitags. Most relevant BlastN matches comprised 567,420 tags, regarding 75,404 unitags with 164,860 different ESTs. To optimize the annotation efficiency, the Gene Ontology (GO) categorization was carried out for 186,191 ESTs (BlastN against Uniprot-SwissProt), permitting the categorization of 118,208 ESTs (63.5%). In an attempt to elect a group of the best tags to be validated by RTqPCR, the GO categorization of the tag-related ESTs allowed the in silico identification of 213 upregulated unitags responding basically to abiotic stresses, from which 145 presented no hits after BlastN analysis, probably concerning new genes still uncovered in previous studies. The present report analyzes the sugarcane transcriptome under drought stress, using a combination of high-throughput transcriptome profiling by SuperSAGE with the Solexa sequencing technology, allowing the identification of potential target genes during the stress response.


Assuntos
Secas , Perfilação da Expressão Gênica/métodos , Resposta ao Choque Térmico/fisiologia , Proteínas de Plantas/metabolismo , Saccharum/metabolismo , Transcriptoma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...