Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(6): 981-993, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811816

RESUMO

Viral infection makes us feel sick as the immune system alters systemic metabolism to better fight the pathogen. The extent of these changes is relative to the severity of disease. Whether blood glucose is subject to infection-induced modulation is mostly unknown. Here we show that strong, nonlethal infection restricts systemic glucose availability, which promotes the antiviral type I interferon (IFN-I) response. Following viral infection, we find that IFNγ produced by γδ T cells stimulates pancreatic ß cells to increase glucose-induced insulin release. Subsequently, hyperinsulinemia lessens hepatic glucose output. Glucose restriction enhances IFN-I production by curtailing lactate-mediated inhibition of IRF3 and NF-κB signaling. Induced hyperglycemia constrained IFN-I production and increased mortality upon infection. Our findings identify glucose restriction as a physiological mechanism to bring the body into a heightened state of responsiveness to viral pathogens. This immune-endocrine circuit is disrupted in hyperglycemia, possibly explaining why patients with diabetes are more susceptible to viral infection.


Assuntos
Glicemia , Imunidade Inata , Interferon gama , Animais , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos , Glicemia/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Insulina/metabolismo , Insulina/imunologia , Camundongos Knockout , Hiperglicemia/imunologia , Fator Regulador 3 de Interferon/metabolismo , NF-kappa B/metabolismo , Humanos , Fígado/imunologia , Fígado/virologia , Fígado/metabolismo , Masculino
2.
Circ Res ; 132(11): 1546-1565, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228235

RESUMO

The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Coração , Neurônios/fisiologia , Encéfalo
3.
Immunity ; 56(4): 695-703, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37044060

RESUMO

Type 2 immune responses drive a broad range of biological processes including defense from large parasites, immunity to allergens, and non-immunity-related functions, such as metabolism and tissue homeostasis. The symptoms provoked by type 2 immunity, such as vomiting, coughing or itching, encompass nervous system triggering. Here, we review recent findings that place type 2 neuroimmune circuits at the center stage of immunity at barrier surfaces. We emphasize the homeostatic functions of these circuitries and how deregulation may drive pathology and impact disease outcomes, including in the context of cancer. We discuss a paradigm wherein type 2 neuroimmune circuits are central regulators of organismal physiology.


Assuntos
Sistema Nervoso , Neuroimunomodulação , Homeostase , Imunidade
4.
Sci Immunol ; 7(75): eabk2541, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054336

RESUMO

Interactions between the mammalian host and commensal microbiota are enforced through a range of immune responses that confer metabolic benefits and promote tissue health and homeostasis. Immunoglobulin A (IgA) responses directly determine the composition of commensal species that colonize the intestinal tract but require substantial metabolic resources to fuel antibody production by tissue-resident plasma cells. Here, we demonstrate that IgA responses are subject to diurnal regulation over the course of a circadian day. Specifically, the magnitude of IgA secretion, as well as the transcriptome of intestinal IgA+ plasma cells, was found to exhibit rhythmicity. Oscillatory IgA responses were found to be entrained by time of feeding and were also found to be in part coordinated by the plasma cell-intrinsic circadian clock via deletion of the master clock gene Arntl. Moreover, reciprocal interactions between the host and microbiota dictated oscillatory dynamics among the commensal microbial community and its associated transcriptional and metabolic activity in an IgA-dependent manner. Together, our findings suggest that circadian networks comprising intestinal IgA, diet, and the microbiota converge to align circadian biology in the intestinal tract and to ensure host-microbial mutualism.


Assuntos
Microbiota , Simbiose , Animais , Imunoglobulina A Secretora , Intestinos , Mamíferos , Periodicidade
5.
Dev Cell ; 57(13): 1661-1675.e7, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35716661

RESUMO

Recruitment of stem cells is crucial for tissue repair. Although stem cell niches can provide important signals, little is known about mechanisms that coordinate the engagement of disseminated stem cells across an injured tissue. In Drosophila, adult brain lesions trigger local recruitment of scattered dormant neural stem cells suggesting a mechanism for creating a transient stem cell activation zone. Here, we find that injury triggers a coordinated response in neuro-glial clusters that promotes the spread of a neuron-derived stem cell factor via glial secretion of the lipocalin-like transporter Swim. Strikingly, swim is induced in a Hif1-α-dependent manner in response to brain hypoxia. Mammalian Swim (Lcn7) is also upregulated in glia of the mouse hippocampus upon brain injury. Our results identify a central role of neuro-glial clusters in promoting neural stem cell activation at a distance, suggesting a conserved function of the HIF1-α/Swim/Wnt module in connecting injury-sensing and regenerative outcomes.


Assuntos
Drosophila , Células-Tronco Neurais , Animais , Mamíferos , Camundongos , Neuroglia , Neurônios , Nicho de Células-Tronco
6.
Annu Rev Neurosci ; 45: 339-360, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35363534

RESUMO

Interactions between the nervous and immune systems were recognized long ago, but recent studies show that this crosstalk occurs more frequently than was previously appreciated. Moreover, technological advances have enabled the identification of the molecular mediators and receptors that enable the interaction between these two complex systems and provide new insights on the role of neuroimmune crosstalk in organismal physiology. Most neuroimmune interactions occur at discrete anatomical locations in which neurons and immune cells colocalize. Here, we describe the interactions of the different branches of the peripheral nervous system with immune cells in various organs, including the skin, intestine, lung, and adipose tissue. We highlight how neuroimmune crosstalk orchestrates physiological processes such as host defense, tissue repair, metabolism, and thermogenesis. Unraveling these intricate relationships is invaluable to explore the therapeutic potential of neuroimmune interactions.


Assuntos
Sistema Imunitário , Neuroimunomodulação , Neuroimunomodulação/fisiologia , Sistema Nervoso Periférico
8.
Nat Immunol ; 23(1): 1, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34789862
9.
Nature ; 597(7876): 410-414, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34408322

RESUMO

Signals from sympathetic neurons and immune cells regulate adipocytes and thereby contribute to fat tissue biology. Interactions between the nervous and immune systems have recently emerged as important regulators of host defence and inflammation1-4. Nevertheless, it is unclear whether neuronal and immune cells co-operate in brain-body axes to orchestrate metabolism and obesity. Here we describe a neuro-mesenchymal unit that controls group 2 innate lymphoid cells (ILC2s), adipose tissue physiology, metabolism and obesity via a brain-adipose circuit. We found that sympathetic nerve terminals act on neighbouring adipose mesenchymal cells via the ß2-adrenergic receptor to control the expression of glial-derived neurotrophic factor (GDNF) and the activity of ILC2s in gonadal fat. Accordingly, ILC2-autonomous manipulation of the GDNF receptor machinery led to alterations in ILC2 function, energy expenditure, insulin resistance and propensity to obesity. Retrograde tracing and chemical, surgical and chemogenetic manipulations identified a sympathetic aorticorenal circuit that modulates ILC2s in gonadal fat and connects to higher-order brain areas, including the paraventricular nucleus of the hypothalamus. Our results identify a neuro-mesenchymal unit that translates cues from long-range neuronal circuitry into adipose-resident ILC2 function, thereby shaping host metabolism and obesity.


Assuntos
Tecido Adiposo/inervação , Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Imunidade Inata/imunologia , Mesoderma/citologia , Vias Neurais , Neurônios/citologia , Obesidade/metabolismo , Tecido Adiposo/citologia , Animais , Encéfalo/citologia , Sinais (Psicologia) , Citocinas/metabolismo , Metabolismo Energético , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Gônadas/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/metabolismo
10.
Eur J Immunol ; 51(7): 1602-1614, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895990

RESUMO

Neuroimmune interactions have been revealed to be at the centre stage of tissue defence, organ homeostasis, and organismal physiology. Neuronal and immune cell subsets have been shown to colocalize in discrete tissue environments, forming neuroimmune cell units that constitute the basis for bidirectional interactions. These multitissue units drive coordinated neuroimmune responses to local and systemic signals, which represents an important challenge to our current views of mucosal physiology and immune regulation. In this review, we focus on the impact of reciprocal neuroimmune interactions, focusing on the anatomy of neuronal innervation and on the neuronal regulation of immune cells in peripheral tissues. Finally, we shed light on recent studies that explore how neuroimmune interactions maximise sensing and integration of environmental aggressions, modulating immune function in health and disease.


Assuntos
Imunidade nas Mucosas/imunologia , Neuroimunomodulação/imunologia , Animais , Homeostase/imunologia , Humanos , Neurônios/imunologia
11.
Nat Rev Immunol ; 20(4): 217-228, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31848462

RESUMO

Studies in recent years have uncovered the crucial function of neuroimmune interactions in maintaining tissue homeostasis and protection. Immune and neuronal cells are often colocalized at defined anatomical sites, forming neuroimmune cell units, where both cell types coordinate their responses. In addition, even when located at distant sites, neuronal cells can receive signals from and provide signals to peripheral immune cells. As such, neuroimmune interactions are found across multiple organs and have recently emerged as important regulators of physiology. In this Review, we focus on the impact of bidirectional neuroimmune interactions in tissue biology, organ physiology and embryonic development. Finally, we explore how this fast-evolving field is redefining the tenets of inter-organ and intergenerational communications.


Assuntos
Neuroimunomodulação/imunologia , Desenvolvimento Embrionário/imunologia , Homeostase/imunologia , Humanos
12.
13.
Nature ; 574(7777): 254-258, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534216

RESUMO

Group 3 innate lymphoid cells (ILC3s) are major regulators of inflammation, infection, microbiota composition and metabolism1. ILC3s and neuronal cells have been shown to interact at discrete mucosal locations to steer mucosal defence2,3. Nevertheless, it is unclear whether neuroimmune circuits operate at an organismal level, integrating extrinsic environmental signals to orchestrate ILC3 responses. Here we show that light-entrained and brain-tuned circadian circuits regulate enteric ILC3s, intestinal homeostasis, gut defence and host lipid metabolism in mice. We found that enteric ILC3s display circadian expression of clock genes and ILC3-related transcription factors. ILC3-autonomous ablation of the circadian regulator Arntl led to disrupted gut ILC3 homeostasis, impaired epithelial reactivity, a deregulated microbiome, increased susceptibility to bowel infection and disrupted lipid metabolism. Loss of ILC3-intrinsic Arntl shaped the gut 'postcode receptors' of ILC3s. Strikingly, light-dark cycles, feeding rhythms and microbial cues differentially regulated ILC3 clocks, with light signals being the major entraining cues of ILC3s. Accordingly, surgically or genetically induced deregulation of brain rhythmicity led to disrupted circadian ILC3 oscillations, a deregulated microbiome and altered lipid metabolism. Our work reveals a circadian circuitry that translates environmental light cues into enteric ILC3s, shaping intestinal health, metabolism and organismal homeostasis.


Assuntos
Encéfalo/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Homeostase/efeitos da radiação , Intestinos/imunologia , Intestinos/efeitos da radiação , Luz , Linfócitos/imunologia , Linfócitos/efeitos da radiação , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Relógios Biológicos/genética , Relógios Biológicos/efeitos da radiação , Encéfalo/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/imunologia , Ritmo Circadiano/fisiologia , Sinais (Psicologia) , Comportamento Alimentar/efeitos da radiação , Feminino , Microbioma Gastrointestinal/efeitos da radiação , Imunidade Inata/efeitos da radiação , Intestinos/citologia , Metabolismo dos Lipídeos , Linfócitos/metabolismo , Masculino , Camundongos , Fotoperíodo
14.
Mucosal Immunol ; 12(1): 10-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30089849

RESUMO

Mucosal barriers constitute major body surfaces that are in constant contact with the external environment. Mucosal sites are densely populated by a myriad of distinct neurons and immune cell types that sense, integrate and respond to multiple environmental cues. In the recent past, neuro-immune interactions have been reported to play central roles in mucosal health and disease, including chronic inflammatory conditions, allergy and infectious diseases. Discrete neuro-immune cell units act as building blocks of this bidirectional multi-tissue cross-talk, ensuring mucosal tissue health and integrity. Herein, we will focus on reciprocal neuro-immune interactions in the airways and intestine. Such neuro-immune cross-talk maximizes sensing and integration of environmental aggressions, which can be considered an important paradigm shift in our current views of mucosal physiology and immune regulation.


Assuntos
Hipersensibilidade/imunologia , Inflamação/imunologia , Mucosa/fisiologia , Neuroimunomodulação , Neurônios/fisiologia , Animais , Comunicação Celular , Humanos , Receptor Cross-Talk
15.
Annu Rev Immunol ; 37: 19-46, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30379595

RESUMO

The interplay between the immune and nervous systems has been acknowledged in the past, but only more recent studies have started to unravel the cellular and molecular players of such interactions. Mounting evidence indicates that environmental signals are sensed by discrete neuro-immune cell units (NICUs), which represent defined anatomical locations in which immune and neuronal cells colocalize and functionally interact to steer tissue physiology and protection. These units have now been described in multiple tissues throughout the body, including lymphoid organs, adipose tissue, and mucosal barriers. As such, NICUs are emerging as important orchestrators of multiple physiological processes, including hematopoiesis, organogenesis, inflammation, tissue repair, and thermogenesis. In this review we focus on the impact of NICUs in tissue physiology and how this fast-evolving field is driving a paradigm shift in our understanding of immunoregulation and organismal physiology.


Assuntos
Sistema Imunitário , Sistema Nervoso , Neuroimunomodulação , Animais , Humanos , Imunidade nas Mucosas , Imunomodulação
16.
Immunity ; 49(1): 9-11, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021148

RESUMO

Pulmonary neuroimmune networks have emerged as important regulators of lung homeostasis. In a recent issue of Science, Sui et al. show that strategically positioned pulmonary neuroendocrine cells amplify allergic airway responses via group 2 innate lymphoid cells.


Assuntos
Asma , Humanos , Pulmão , Linfócitos , Células Neuroendócrinas
18.
Immunity ; 48(1): 120-132.e8, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29343433

RESUMO

Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis.


Assuntos
Colite/metabolismo , Linfócitos/metabolismo , Tecido Linfoide/metabolismo , Oxisteróis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Movimento Celular/genética , Colite/imunologia , Colite/patologia , Colo/imunologia , Colo/patologia , Citocinas/metabolismo , Citometria de Fluxo , Imunofluorescência , Ligantes , Linfócitos/patologia , Tecido Linfoide/patologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
19.
Nature ; 549(7671): 277-281, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28869974

RESUMO

Group 2 innate lymphoid cells (ILC2s) regulate inflammation, tissue repair and metabolic homeostasis, and are activated by host-derived cytokines and alarmins. Discrete subsets of immune cells integrate nervous system cues, but it remains unclear whether neuron-derived signals control ILC2s. Here we show that neuromedin U (NMU) in mice is a fast and potent regulator of type 2 innate immunity in the context of a functional neuron-ILC2 unit. We found that ILC2s selectively express neuromedin U receptor 1 (Nmur1), and mucosal neurons express NMU. Cell-autonomous activation of ILC2s with NMU resulted in immediate and strong NMUR1-dependent production of innate inflammatory and tissue repair cytokines. NMU controls ILC2s downstream of extracellular signal-regulated kinase and calcium-influx-dependent activation of both calcineurin and nuclear factor of activated T cells (NFAT). NMU treatment in vivo resulted in immediate protective type 2 responses. Accordingly, ILC2-autonomous ablation of Nmur1 led to impaired type 2 responses and poor control of worm infection. Notably, mucosal neurons were found adjacent to ILC2s, and these neurons directly sensed worm products and alarmins to induce NMU and to control innate type 2 cytokines. Our work reveals that neuron-ILC2 cell units confer immediate tissue protection through coordinated neuroimmune sensory responses.


Assuntos
Imunidade Inata , Linfócitos/imunologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Calcineurina/metabolismo , Cálcio/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Imunidade Inata/efeitos dos fármacos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Nippostrongylus/imunologia , Receptores de Neurotransmissores/metabolismo , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia
20.
Immunity ; 47(3): 435-449.e8, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930659

RESUMO

Commitment to the innate lymphoid cell (ILC) lineage is determined by Id2, a transcriptional regulator that antagonizes T and B cell-specific gene expression programs. Yet how Id2 expression is regulated in each ILC subset remains poorly understood. We identified a cis-regulatory element demarcated by a long non-coding RNA (lncRNA) that controls the function and lineage identity of group 1 ILCs, while being dispensable for early ILC development and homeostasis of ILC2s and ILC3s. The locus encoding this lncRNA, which we termed Rroid, directly interacted with the promoter of its neighboring gene, Id2, in group 1 ILCs. Moreover, the Rroid locus, but not the lncRNA itself, controlled the identity and function of ILC1s by promoting chromatin accessibility and deposition of STAT5 at the promoter of Id2 in response to interleukin (IL)-15. Thus, non-coding elements responsive to extracellular cues unique to each ILC subset represent a key regulatory layer for controlling the identity and function of ILCs.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata/genética , Linfócitos/metabolismo , RNA Longo não Codificante/genética , Sequências Reguladoras de Ácido Nucleico , Animais , Diferenciação Celular , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Montagem e Desmontagem da Cromatina , Feminino , Perfilação da Expressão Gênica , Loci Gênicos , Homeostase , Proteína 2 Inibidora de Diferenciação/genética , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Linfócitos/imunologia , Masculino , Camundongos , Regiões Promotoras Genéticas , Fator de Transcrição STAT5/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...