Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 14340, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658206

RESUMO

A central assumption in the behavioral sciences is that choice behavior generalizes enough across individuals that measurements from a sampled group can predict the behavior of the population. Following from this assumption, the unit of behavioral sampling or measurement for most neuroimaging studies is the individual; however, cognitive neuroscience is increasingly acknowledging a dissociation between neural activity that predicts individual behavior and that which predicts the average or aggregate behavior of the population suggesting a greater importance of individual differences than is typically acknowledged. For instance, past work has demonstrated that some, but not all, of the neural activity observed during value-based decision-making is able to predict not just individual subjects' choices but also the success of products on large, online marketplaces-even when those two behavioral outcomes deviate from one another-suggesting that some neural component processes of decision-making generalize to aggregate market responses more readily across individuals than others do. While the bulk of such research has highlighted affect-related neural responses (i.e. in the nucleus accumbens) as a better predictor of group-level behavior than frontal cortical activity associated with the integration of more idiosyncratic choice components, more recent evidence has implicated responses in visual cortical regions as strong predictors of group preference. Taken together, these findings suggest a role of neural responses during early perception in reinforcing choice consistency across individuals and raise fundamental scientific questions about the role sensory systems in value-based decision-making processes. We use a multivariate pattern analysis approach to show that single-trial visually evoked electroencephalographic (EEG) activity can predict individual choice throughout the post-stimulus epoch; however, a nominally sparser set of activity predicts the aggregate behavior of the population. These findings support an account in which a subset of the neural activity underlying individual choice processes can scale to predict behavioral consistency across people, even when the choice behavior of the sample does not match the aggregate behavior of the population.


Assuntos
Neurociência Cognitiva , Potenciais Evocados , Humanos , Eletroencefalografia , Lobo Frontal , Individualidade
3.
J Neurosci ; 43(46): 7842-7852, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722848

RESUMO

Our muscles are the primary means through which we affect the external world, and the sense of agency (SoA) over the action through those muscles is fundamental to our self-awareness. However, SoA research to date has focused almost exclusively on agency over action outcomes rather than over the musculature itself, as it was believed that SoA over the musculature could not be manipulated directly. Drawing on methods from human-computer interaction and adaptive experimentation, we use human-in-the-loop Bayesian optimization to tune the timing of electrical muscle stimulation so as to robustly elicit a SoA over electrically actuated muscle movements in male and female human subjects. We use time-resolved decoding of subjects' EEG to estimate the time course of neural activity which predicts reported agency on a trial-by-trial basis. Like paradigms which assess SoA over action consequences, we found that the late (post-conscious) neural activity predicts SoA. Unlike typical paradigms, however, we also find patterns of early (sensorimotor) activity with distinct temporal dynamics predicts agency over muscle movements, suggesting that the "neural correlates of agency" may depend on the level of abstraction (i.e., direct sensorimotor feedback versus downstream consequences) most relevant to a given agency judgment. Moreover, fractal analysis of the EEG suggests that SoA-contingent dynamics of neural activity may modulate the sensitivity of the motor system to external input.SIGNIFICANCE STATEMENT The sense of agency, the feeling of "I did that," when directing one's own musculature is a core feature of human experience. We show that we can robustly manipulate the sense of agency over electrically actuated muscle movements, and we investigate the time course of neural activity that predicts the sense of agency over these actuated movements. We find evidence of two distinct neural processes: a transient sequence of patterns that begins in the early sensorineural response to muscle stimulation and a later, sustained signature of agency. These results shed light on the neural mechanisms by which we experience our movements as volitional.


Assuntos
Movimento , Percepção , Humanos , Masculino , Feminino , Teorema de Bayes , Movimento/fisiologia , Encéfalo , Músculos
4.
Neuroimage ; 277: 120232, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348624

RESUMO

Cognitive neuroscientists have been grappling with two related experimental design problems. First, the complexity of neuroimaging data (e.g. often hundreds of thousands of correlated measurements) and analysis pipelines demands bespoke, non-parametric statistical tests for valid inference, and these tests often lack an agreed-upon method for performing a priori power analyses. Thus, sample size determination for neuroimaging studies is often arbitrary or inferred from other putatively but questionably similar studies, which can result in underpowered designs - undermining the efficacy of neuroimaging research. Second, when meta-analyses estimate the sample sizes required to obtain reasonable statistical power, estimated sample sizes can be prohibitively large given the resource constraints of many labs. We propose the use of sequential analyses to partially address both of these problems. Sequential study designs - in which the data is analyzed at interim points during data collection and data collection can be stopped if the planned test statistic satisfies a stopping rule specified a priori - are common in the clinical trial literature, due to the efficiency gains they afford over fixed-sample designs. However, the corrections used to control false positive rates in existing approaches to sequential testing rely on parametric assumptions that are often violated in neuroimaging settings. We introduce a general permutation scheme that allows sequential designs to be used with arbitrary test statistics. By simulation, we show that this scheme controls the false positive rate across multiple interim analyses. Then, performing power analyses for seven evoked response effects seen in the EEG literature, we show that this sequential analysis approach can substantially outperform fixed-sample approaches (i.e. require fewer subjects, on average, to detect a true effect) when study designs are sufficiently well-powered. To facilitate the adoption of this methodology, we provide a Python package "niseq" with sequential implementations of common tests used for neuroimaging: cluster-based permutation tests, threshold-free cluster enhancement, t-max, F-max, and the network-based statistic with tutorial examples using EEG and fMRI data.


Assuntos
Neurociência Cognitiva , Humanos , Projetos de Pesquisa , Tamanho da Amostra , Imageamento por Ressonância Magnética/métodos , Neuroimagem
5.
Sci Rep ; 11(1): 14290, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253760

RESUMO

The frequency-following response (FFR) provides a measure of phase-locked auditory encoding in humans and has been used to study subcortical processing in the auditory system. While effects of experience on the FFR have been reported, few studies have examined whether individual differences in early sensory encoding have measurable effects on human performance. Absolute pitch (AP), the rare ability to label musical notes without reference notes, provides an excellent model system for testing how early neural encoding supports specialized auditory skills. Results show that the FFR predicts pitch labelling performance better than traditional measures related to AP (age of music onset, tonal language experience, pitch adjustment and just-noticeable-difference scores). Moreover, the stimulus type used to elicit the FFR (tones or speech) impacts predictive performance in a manner that is consistent with prior research. Additionally, the FFR predicts labelling performance for piano tones better than unfamiliar sine tones. Taken together, the FFR reliably distinguishes individuals based on their explicit pitch labeling abilities, which highlights the complex dynamics between sensory processing and cognition.


Assuntos
Percepção Auditiva/fisiologia , Comportamento , Audição/fisiologia , Percepção da Altura Sonora/fisiologia , Estimulação Acústica/métodos , Adulto , Eletrofisiologia , Feminino , Humanos , Individualidade , Idioma , Masculino , Modelos Estatísticos , Música , Análise de Regressão , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...