Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 205: 108473, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524365

RESUMO

DNA methylation and hydroxymethylation represent important epigenetic modifications involved in cell differentiation. DNA hydroxymethylation can be used to classify independent biological samples by tissue type. Relatively little is known regarding the genomic abundance and function of 5-hydroxymethylcytosine (5-hmC) in ocular tissues. The choroid supplies oxygen and nutrients to the outer retina through its dense network of blood vessels. This connective tissue is mainly composed of pigmented melanocytes, and stromal fibroblasts. Since DNA hydroxymethylation level is relatively high in cutaneous melanocytes, we investigated the presence of 5-hmC in choroidal melanocytes, as well as the expression of ten-eleven translocation methylcytosine dioxygenases (TETs) and isocitrate dehydrogenases (IDHs) implicated in this DNA demethylation pathway. Immunofluorescence, DNA slot blots and liquid chromatography coupled to tandem mass spectrometry performed with choroidal tissues and melanocytes within these tissues revealed that they have a relatively high level of 5-hmC. We also examined the expression of TET1/2 and IDH1/2 in choroidal melanocytes by gene expression profiling, qPCR and Western blotting. In addition, we detected decreased levels of 5-hmC when choroidal melanocytes were exposed to a lower concentration of oxygen. Our study therefore demonstrates that DNA hydroxymethylation is present in choroidal melanocytes, and that the abundance of this epigenetic mark is impacted by hypoxia.


Assuntos
5-Metilcitosina/análogos & derivados , Corioide/metabolismo , Dioxigenases/metabolismo , Isocitrato Desidrogenase/metabolismo , Melanócitos/metabolismo , 5-Metilcitosina/metabolismo , Idoso , Western Blotting , Cromatografia Líquida , Metilação de DNA , Dioxigenases/genética , Feminino , Imunofluorescência , Expressão Gênica , Humanos , Isocitrato Desidrogenase/genética , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Doadores de Tecidos
2.
BMC Complement Altern Med ; 19(1): 303, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703673

RESUMO

BACKGROUND: Candida albicans is an opportunistic pathogen that causes oral candidiasis and denture stomatitis. It has also been reported to infect oral mucositis lesions in patients who suffer from cancer affecting the head and neck and who receive chemotherapy and radiotherapy treatments. This study aimed to investigate the effects of two cinnamon bark fractions, i.e., an essential oil and an aqueous extract enriched in proanthocyanidins (Cinnulin PF®) on growth, biofilm formation, and adherence properties of C. albicans as well as on oral epithelial cells (barrier integrity, inflammatory response). METHODS: A microplate dilution assay was used to determine antifungal and anti-biofilm properties. A fluorescent assay was used to determine C. albicans adherence to oral epithelial cells. Cytotoxicity toward oral epithelial cells was assessed by determination of cell metabolic activity. Tight junction integrity of gingival keratinocytes was assessed by determination of transepithelial electrical resistance. IL-6 and IL-8 secretion by TNFα-stimulated oral epithelial cells was quantified by ELISA. RESULTS: While Cinnulin PF® did not reduce C. albicans growth, the cinnamon bark oil exhibited high antifungal activity with minimum inhibitory concentrations and minimum fungicidal concentrations in the range of 0.039 to 0.078%. The cinnamon oil was also active against a pre-formed C. albicans biofilm. Interestingly, Cinnulin PF® prevented biofilm formation by C. albicans and attenuated its adherence to oral epithelial cells. At their effective concentrations, the cinnamon oil and the Cinnulin PF® displayed no significant cytotoxicity against oral epithelial cells. In an in vitro model, both cinnamon fractions reinforced the integrity of the oral epithelial barrier. Lastly, Cinnulin PF® inhibited the secretion of interleukin-6 and interleukin-8 by oral epithelial cells stimulated with TNF-α. CONCLUSION: By their ability to attenuate growth, biofilm formation and adherence property of C. albicans, to reinforce the epithelial barrier function, and to exert anti-inflammatory properties the two cinnamon fractions (essential oil, Cinnulin PF®) investigated in the present study may be promising agents for treating oral infections involving C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase Bucal/microbiologia , Cinnamomum zeylanicum/química , Células Epiteliais/microbiologia , Boca/microbiologia , Óleos Voláteis/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Candidíase Bucal/tratamento farmacológico , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Boca/metabolismo , Casca de Planta/química
3.
Medicines (Basel) ; 5(2)2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670027

RESUMO

Kampo medicines prescribed by specialized medical practitioners and Japanese physicians have gradually reemerged in Japan as alternatives to Western medications. Kampo formulations are composed of several plant extracts and, as such, the broad variety of phytochemicals they contain likely act synergistically to provide their beneficial effects. Kampo medicines have traditionally been prescribed for a number of health conditions, including chronic hepatitis, bronchial asthma, anemia, etc. The aim of this article is to review the beneficial effects of Kampos with respect to oral health. Pertinent papers published between 1970 and 2017 were retrieved by searching in PubMed, ScienceDirect, Web of Science, and Scopus using key words followed by evaluation of the relevant articles. In vitro studies have identified a number of properties that give credence to the potential of Kampos for treating or preventing oral diseases/disorders. Given their anti-microbial and anti-inflammatory properties, they may be promising agents for controlling periodontal diseases, oral mucositis, xerostomia, and drug-induced gingival overgrowth. Since some oral diseases have a complex etiology that involves microbial pathogens and the host immune response, agents with dual functionality such as Kampo phytochemicals may offer a therapeutic advantage.

4.
Arch Oral Biol ; 83: 97-104, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28743086

RESUMO

OBJECTIVES: Halitosis, also known as bad breath or oral malodour, is a condition affecting a large proportion of the population. Solobacterium moorei is a Gram-positive anaerobic bacterium that has been specifically associated with halitosis. In this study, we investigated the effects of essential oils, more particularly cinnamon bark oil, on growth, biofilm formation, eradication and killing, as well as hydrogen sulfide (H2S) production by S. moorei. METHODS: A broth microdilution assay was used to determine the antibacterial activity of essential oils. Biofilm formation was assessed by a crystal violet staining assay and scanning electron microscopy. The biofilm of S. moorei was characterized by enzymatic treatments. Biofilm killing was determined by a luminescence assay monitoring ATP production. H2S production was quantified with a colorimetric assay. The biocompatibility of cinnamon oil was investigated using a gingival keratinocyte cell line. RESULTS: Among the ten essential oils tested, cinnamon oil was found to be the most powerful against S. moorei with MIC and MBC values of 0.039% and 0.156%, respectively. The biofilm formed by S. moorei was then characterized. The fact that DNase I and to a lesser extent proteinase K significantly reduced biofilm formation by S. moorei and induced its eradication suggests that the extracellular matrix of S. moorei biofilm may be mainly containing a DNA backbone associated with proteins. At concentrations below the MIC, cinnamon oil reduced S. moorei biofilm formation that resulted from an attenuation of bacterial growth. It was also found that treatment of a pre-formed biofilm of S. moorei with cinnamon oil significantly decreased its viability although it did not cause its eradication. Cinnamon oil had an inhibitory effect on the production of H2S by S. moorei. Lastly, it was found that at concentrations effective against S. moorei, no significant loss of viability in gingival keratinocytes occurred after a 1-h exposure. CONCLUSIONS: Our study brought evidence that cinnamon oil may be a promising substance to incorporate into oral hygiene products for controlling bad breath by inhibiting growth, killing biofilm, and reducing H2S production by S. moorei. Moreover, at the effective concentrations, cinnamon oil was found to have no toxic effects on oral keratinocytes.


Assuntos
Biofilmes/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Halitose/tratamento farmacológico , Halitose/microbiologia , Óleos Voláteis/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Linhagem Celular , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...