Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 28(6): 066501, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37334209

RESUMO

Significance: Adaptive optics (AO) has been implemented on several microscopy setups and has proven its ability to increase both signal and resolution. However, reported configurations are not suited for fast imaging of live samples or are based on an invasive or complex implementation method. Aim: Provide a fast aberration correction method with an easy to implement AO module compatible with light-sheet fluorescence microscopy (LSFM) for enhanced imaging of live samples. Approach: Development of an AO add-on module for LSFM based on direct wavefront sensing without requiring a guide star using an extended-scene Shack-Hartmann wavefront sensor. The enhanced setup uses a two-color sample labeling strategy to optimize the photon budget. Results: Fast AO correction of in-depth aberrations in an ex-vivo adult Drosophila brain enables doubling the contrast when imaging with either cell reporters or calcium sensors for functional imaging. We quantify the gain in terms of image quality on different functional domains of sleep neurons in the Drosophila brain at various depths and discuss the optimization of key parameters driving AO. Conclusion: We developed a compact AO module that can be integrated into most of the reported light-sheet microscopy setups, provides significant improvement of image quality and is compatible with fast imaging requirements such as calcium imaging.


Assuntos
Cálcio , Drosophila melanogaster , Animais , Microscopia de Fluorescência , Drosophila , Neuroimagem , Encéfalo/diagnóstico por imagem
2.
Biomed Opt Express ; 13(12): 6211-6228, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36589592

RESUMO

Lattice light-sheet microscopy (LLSM) is a very efficient technique for high resolution 3D imaging of dynamic phenomena in living biological samples. However, LLSM imaging remains limited in depth due to optical aberrations caused by sample-based refractive index mismatch. Here, we propose a simple and low-cost active image optimization (AIO) method to recover high resolution imaging inside thick biological samples. AIO is based on (1) a light-sheet autofocus step (AF) followed by (2) an adaptive optics image-based optimization. We determine the optimum AIO parameters to provide a fast, precise and robust aberration correction on biological samples. Finally, we demonstrate the performances of our approach on sub-micrometric structures in brain slices and plant roots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...