Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(39): 55072-55088, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34125383

RESUMO

As a consequence of industrial mining activity, high volumes of tailings are scattered around Mexico. Frequently, tailings contain heavy metals (HM) which entail threats against all organisms. The aim of this research was to identify plants and root fungal endophytes in polymetallic polluted tailings with the potential to be used in strategies of bioremediation. Four deposits of mine wastes, situated in a semi-arid region near urban and semi-urban populations, and agricultural areas, were studied. The physical and chemical characteristics of substrates, accumulation of HM in plant tissues, root colonization between arbuscular mycorrizal (AMF) and dark septate endophyte (DSE) fungi, and the identification of DSE fungi isolated from the roots of two plant species were studied. Substrates from all four sites exhibited extreme conditions: high levels in sand; low water retention; poor levels in available phosphorus and nitrogen content; and potentially toxic levels of lead (Pb), cadmium (Cd), and zinc (Zn). The native plants Lupinus campestris, Tagetes lunulata, and Cerdia congestiflora, as well as the exotic Cortaderia selloana and Asphodelus fistulosus, demonstrated a relevant potential role in the phytostabilization and/or phytoextraction of Pb, Cd, and Zn, according to the accumulation of metal in roots and translocation to shoots. Roots of eleven analyzed plant species were differentially co-colonized between AMF and DSE fungi; the presence of arbuscules and microsclerotia suggested an active physiological interaction. Fourteen DSE fungi were isolated from the inner area of roots of T. lunulata and Pennisetum villosum; molecular identification revealed the predominance of Alternaria and other Pleosporales. The use of native DSE fungi could reinforce the establishment of plants for biological reclamation of mine waste in semi-arid climate. Efforts are needed in order to accelerate a vegetation practice of mine wastes under study, which can reduce, in turn, their potential ecotoxicological impact on organisms, human populations, and agricultural areas.


Assuntos
Ecotoxicologia , Endófitos , Poluição Ambiental , Mineração , Plantas/microbiologia , Humanos , Metais Pesados , México
2.
Arch Environ Contam Toxicol ; 64(2): 219-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23124167

RESUMO

The mining district of Molango in the Hidalgo State, Mexico, possesses one of the largest deposits of manganese (Mn) ore in the world. This research assessed the impacts of Mn mining activity on the environment, particularly the interactions among soil, plants, and arbuscular mycorrhiza (AM) at a location under the influence of an open Mn mine. Soils and plants from three sites (soil under maize, soil under native vegetation, and mine wastes with some vegetation) were analyzed. Available Mn in both soil types and mine wastes did not reach toxic levels. Samples of the two soil types were similar regarding physical, chemical, and biological properties; mine wastes were characterized by poor physical structure, nutrient deficiencies, and a decreased number of arbuscular mycorrhizal fungi (AMF) spores. Tissues of six plant species accumulated Mn at normal levels. AM was absent in the five plant species (Ambrosia psilostachya, Chenopodium ambrosoides, Cynodon dactylon, Polygonum hydropiperoides, and Wigandia urens) established in mine wastes, which was consistent with the significantly lower number of AMF spores compared with both soil types. A. psilostachya (native vegetation) and Zea mays showed mycorrhizal colonization in their root systems; in the former, AM significantly decreased Mn uptake. The following was concluded: (1) soils, mine wastes, and plant tissues did not accumulate Mn at toxic levels; (2) despite its poor physical structure and nutrient deficiencies, the mine waste site was colonized by at least five plant species; (3) plants growing in both soil types interacted with AMF; and (4) mycorrhizal colonization of A. psilostachya influenced low uptake of Mn by plant tissues.


Assuntos
Manganês/toxicidade , Mineração , Micorrizas/efeitos dos fármacos , Plantas/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/toxicidade , Monitoramento Ambiental , Resíduos Industriais , Manganês/análise , México , Micorrizas/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...