Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 257(2): 198-217, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35107828

RESUMO

SARS-CoV-2, the causative agent of COVID-19, typically manifests as a respiratory illness, although extrapulmonary involvement, such as in the gastrointestinal tract and nervous system, as well as frequent thrombotic events, are increasingly recognised. How this maps onto SARS-CoV-2 organ tropism at the histological level, however, remains unclear. Here, we perform a comprehensive validation of a monoclonal antibody against the SARS-CoV-2 nucleocapsid protein (NP) followed by systematic multisystem organ immunohistochemistry analysis of the viral cellular tropism in tissue from 36 patients, 16 postmortem cases and 16 biopsies with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 status from the peaks of the pandemic in 2020 and four pre-COVID postmortem controls. SARS-CoV-2 anti-NP staining in the postmortem cases revealed broad multiorgan involvement of the respiratory, digestive, haematopoietic, genitourinary and nervous systems, with a typical pattern of staining characterised by punctate paranuclear and apical cytoplasmic labelling. The average time from symptom onset to time of death was shorter in positively versus negatively stained postmortem cases (mean = 10.3 days versus mean = 20.3 days, p = 0.0416, with no cases showing definitive staining if the interval exceeded 15 days). One striking finding was the widespread presence of SARS-CoV-2 NP in neurons of the myenteric plexus, a site of high ACE2 expression, the entry receptor for SARS-CoV-2, and one of the earliest affected cells in Parkinson's disease. In the bone marrow, we observed viral SARS-CoV-2 NP within megakaryocytes, key cells in platelet production and thrombus formation. In 15 tracheal biopsies performed in patients requiring ventilation, there was a near complete concordance between immunohistochemistry and PCR swab results. Going forward, our findings have relevance to correlating clinical symptoms with the organ tropism of SARS-CoV-2 in contemporary cases as well as providing insights into potential long-term complications of COVID-19. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Megacariócitos , Plexo Mientérico , Neurônios
2.
Acta Neuropathol Commun ; 9(1): 18, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509301

RESUMO

BACKGROUND: Multimerization is a key process in prion-like disorders such as Alzheimer's disease (AD), since it is a requirement for self-templating tau and beta-amyloid amyloidogenesis. AT8-immunohistochemistry for hyperphosphorylated tau is currently used for the diagnosis and staging of tau pathology. Given that tau-tau interactions can occur in the absence of hyperphosphorylation or other post-translational modifications (PTMs), the direct visualization of tau multimerization could uncover early pathological tau multimers. METHODS: Here, we used bimolecular fluorescent complementation, rapamycin-dependent FKBP/FRB-tau interaction and transmission electron microscopy to prove the in vitro specificity of tau-proximity ligation assay (tau-PLA). We then analyzed MAPT KO and P301S transgenic mice, and human hippocampus and temporal isocortex of all Braak stages with tau-PLA and compared it with immunohistochemistry for the diagnostic antibody AT8, the early phosphorylation-dependent AT180, and the conformational-dependent antibody MC1. Finally, we performed proteinase-K treatment to infer the content of amyloidogenic beta-sheet fold. RESULTS: Our novel tau-proximity ligation assay (tau-PLA) directly visualized tau-tau interactions in situ, and exclusively recognized tau multimers but not monomers. It elicited no signal in MAPT KO mouse brains, but extensively labelled P301S transgenic mice and AD brain. Two groups of structures were detected, a previously unreported widespread small-sized diffuse pathology and large, neurofibrillary-like lesions. Tau-PLA-labelled diffuse pathology appeared from the earliest Braak stages, mostly unaccompanied by tangle-like tau-immunohistochemistry, being significantly more sensitive than any small-sized dot-/thread-like pathology labelled by AT180-, AT8- and MC1-immunohistochemistry in most regions quantified at stages 0-II. Tau-PLA-labelled diffuse pathology was extremely sensitive to Proteinase-K, in contrast to large lesions. CONCLUSIONS: Tau-PLA is the first method to directly visualize tau multimers both in vitro and in situ with high specificity. We find that tau multimerization appears extensively from the earliest presymptomatic Braak stages as a previously unreported type of diffuse pathology. Importantly, in our study multimerization is the earliest detectable molecular event of AD tau pathology. Our findings open a new window to the study of early tau pathology, with potential implications in early diagnosis and the design of therapeutic strategies.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Animais , Doenças Assintomáticas , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Emaranhados Neurofibrilares/patologia , Multimerização Proteica , Proteínas tau/genética
3.
Acta Neuropathol ; 138(5): 681-704, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31006067

RESUMO

Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy are neurodegenerative disorders resulting in progressive motor/cognitive deficits among other symptoms. They are characterised by stereotypical brain cell loss accompanied by the formation of proteinaceous aggregations of the protein α-synuclein (α-syn), being, therefore, termed α-synucleinopathies. Although the presence of α-syn inclusions is a common hallmark of these disorders, the exact nature of the deposited protein is specific to each disease. Different neuroanatomical regions and cellular populations manifest a differential vulnerability to the appearance of protein deposits, cell dysfunction, and cell death, leading to phenotypic diversity. The present review describes the multiple factors that contribute to the selective vulnerability in α-synucleinopathies. We explore the intrinsic cellular properties in the affected regions, including the physiological and pathophysiological roles of endogenous α-syn, the metabolic and genetic build-up of the cells and their connectivity. These factors converge with the variability of the α-syn conformational strains and their spreading capacity to dictate the phenotypic diversity and regional vulnerability of each disease. Finally, we describe the exogenous and environmental factors that potentially contribute by igniting and modulating the differential pathology in α-synucleinopathies. In conclusion, we think that it is the confluence of this disruption of the cellular metabolic state and α-syn structural equilibrium through the anatomical connectivity which appears to initiate cascades of pathological processes triggered by genetic, environmental, or stochastic events that result in the "death by a thousand cuts" profile of α-synucleinopathies.


Assuntos
Encéfalo/patologia , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , Sinucleinopatias/patologia , Animais , Humanos , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...