Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Public Health ; 16(12): 1911-1917, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866269

RESUMO

BACKGROUND: We investigated 51 g-negative carbapenem-resistant Enterobacterales (CRE) isolates collected from 22 patients over a five-year period from six health care institutions in the Ochsner Health network in southeast Louisiana. METHODS: Short genomic reads were generated using Illumina sequencing and assembled for each isolate. Isolates were classified as Enterobacter spp. (n = 20), Klebsiella spp. (n = 30), and Escherichia coli (n = 1) and grouped into 19 different multi-locus sequence types (MLST). Species and patient-specific core genomes were constructed representing ∼50% of the chromosomal genome. RESULTS: We identified two sets of patients with genetically related infections; in both cases, the related isolates were collected > 6 months apart, and in one case, the isolates were collected in different locations. On the other hand, we identified four sets of patients with isolates of the same species collected within 21 days from the same location; however, none had genetically related infections. Genes associated with resistance to carbapenem drugs (blaKPC and/or blaCTX-M-15) were found in 76% of the isolates. We found three blaKPC variants (blaKPC-2, blaKPC-3, and blaKPC-4) associated with four different Enterobacter MLST variants, and two blaKPC variants (blaKPC-2, blaKPC-3) associated with seven different Klebsiella MLST variants. CONCLUSIONS: Molecular surveillance is increasingly becoming a powerful tool to understand bacterial spread in both community and clinical settings. This study provides evidence that genetically related infections in clinical settings do not necessarily reflect temporal associations, and vice versa. Our results also highlight the regional genomic and resistance diversity within related bacterial lineages.


Assuntos
Carbapenêmicos , Infecções por Klebsiella , Humanos , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tipagem de Sequências Multilocus , Plasmídeos , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/tratamento farmacológico
2.
BMC Microbiol ; 23(1): 225, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596530

RESUMO

INTRODUCTION: Whole genome sequencing (WGS) of bacterial isolates can be used to identify antimicrobial resistance (AMR) genes. Previous studies have shown that genotype-based AMR has variable accuracy for predicting carbapenem resistance in carbapenem-resistant Enterobacterales (CRE); however, the majority of these studies used short-read platforms (e.g. Illumina) to generate sequence data. In this study, our objective was to determine whether Oxford Nanopore Technologies (ONT) long-read WGS would improve detection of carbapenem AMR genes with respect to short-read only WGS for nine clinical CRE samples. We measured the minimum inhibitory breakpoint (MIC) using two phenotype assays (MicroScan and ETEST) for six antibiotics, including two carbapenems (meropenem and ertapenem) and four non-carbapenems (gentamicin, ciprofloxacin, cefepime, and trimethoprim/sulfamethoxazole). We generated short-read data using the Illumina NextSeq and long-read data using the ONT MinION. Four assembly methods were compared: ONT-only assembly; ONT-only assembly plus short-read polish; ONT + short-read hybrid assembly plus short-read polish; short-read only assembly. RESULTS: Consistent with previous studies, our results suggest that the hybrid assembly produced the highest quality results as measured by gene completeness and contig circularization. However, ONT-only methods had minimal impact on the detection of AMR genes and plasmids compared to short-read methods, although, notably, differences in gene copy number differed between methods. All four assembly methods showed identical presence/absence of the blaKPC-2 carbapenemase gene for all samples. The two phenotype assays showed 100% concordant results for the non-carbapenems, but only 65% concordance for the two carbapenems. The presence/absence of AMR genes was 100% concordant with AMR phenotypes for all four non-carbapenem drugs, although only 22%-50% sensitivity for the carbapenems. CONCLUSIONS: Overall, these findings suggest that the lack of complete correspondence between CRE AMR genotype and phenotype for carbapenems, while concerning, is independent of sequencing platform/assembly method.


Assuntos
Antibacterianos , Carbapenêmicos , Fenótipo , Genótipo , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Ertapenem
3.
PLoS Pathog ; 5(5): e1000444, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19461888

RESUMO

It is widely believed that innate immune responses to Borrelia burgdorferi (Bb) are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs) elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-beta and a number of interferon-stimulated genes (ISGs), which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-alpha, IL-6, IL-10 and IL-1beta in monocytes than did lysates. Secreted IL-18, which, like IL-1beta, also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-beta and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs.


Assuntos
Infecções por Borrelia/imunologia , Borrelia burgdorferi/imunologia , Interferon beta/imunologia , Monócitos/imunologia , Receptor 2 Toll-Like/imunologia , Adulto , Animais , Bacteriólise , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interferon beta/biossíntese , Interleucina-18/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Receptor 5 Toll-Like/imunologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA