Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38748052

RESUMO

PURPOSE: Ultrasound (US) imaging, while advantageous for its radiation-free nature, is challenging to interpret due to only partially visible organs and a lack of complete 3D information. While performing US-based diagnosis or investigation, medical professionals therefore create a mental map of the 3D anatomy. In this work, we aim to replicate this process and enhance the visual representation of anatomical structures. METHODS: We introduce a point cloud-based probabilistic deep learning (DL) method to complete occluded anatomical structures through 3D shape completion and choose US-based spine examinations as our application. To enable training, we generate synthetic 3D representations of partially occluded spinal views by mimicking US physics and accounting for inherent artifacts. RESULTS: The proposed model performs consistently on synthetic and patient data, with mean and median differences of 2.02 and 0.03 in Chamfer Distance (CD), respectively. Our ablation study demonstrates the importance of US physics-based data generation, reflected in the large mean and median difference of 11.8 CD and 9.55 CD, respectively. Additionally, we demonstrate that anatomical landmarks, such as the spinous process (with reconstruction CD of 4.73) and the facet joints (mean distance to ground truth (GT) of 4.96 mm), are preserved in the 3D completion. CONCLUSION: Our work establishes the feasibility of 3D shape completion for lumbar vertebrae, ensuring the preservation of level-wise characteristics and successful generalization from synthetic to real data. The incorporation of US physics contributes to more accurate patient data completions. Notably, our method preserves essential anatomical landmarks and reconstructs crucial injections sites at their correct locations.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38789884

RESUMO

PURPOSE: Segmenting ultrasound images is important for precise area and/or volume calculations, ensuring reliable diagnosis and effective treatment evaluation for diseases. Recently, many segmentation methods have been proposed and shown impressive performance. However, currently, there is no deeper understanding of how networks segment target regions or how they define the boundaries. In this paper, we present a new approach that analyzes ultrasound segmentation networks in terms of learned borders because border delimitation is challenging in ultrasound. METHODS: We propose a way to split the boundaries for ultrasound images into distinct and completed. By exploiting the Grad-CAM of the split borders, we analyze the areas each network pays attention to. Further, we calculate the ratio of correct predictions for distinct and completed borders. We conducted experiments on an in-house leg ultrasound dataset (LEG-3D-US) as well as on two additional public datasets of thyroid, nerves, and one private for prostate. RESULTS: Quantitatively, the networks exhibit around 10% improvement in handling completed borders compared to distinct borders. Similar to doctors, the network struggles to define the borders in less visible areas. Additionally, the Seg-Grad-CAM analysis underscores how completion uses distinct borders and landmarks, while distinct focuses mainly on the shiny structures. We also observe variations depending on the attention mechanism of each architecture. CONCLUSION: In this work, we highlight the importance of studying ultrasound borders differently than other modalities such as MRI or CT. We split the borders into distinct and completed, similar to clinicians, and show the quality of the network-learned information for these two types of borders. Additionally, we open-source a 3D leg ultrasound dataset to the community https://github.com/Al3xand1a/segmentation-border-analysis .

3.
Int J Comput Assist Radiol Surg ; 19(5): 861-869, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270811

RESUMO

PURPOSE: The detection and treatment of abdominal aortic aneurysm (AAA), a vascular disorder with life-threatening consequences, is challenging due to its lack of symptoms until it reaches a critical size. Abdominal ultrasound (US) is utilized for diagnosis; however, its inherent low image quality and reliance on operator expertise make computed tomography (CT) the preferred choice for monitoring and treatment. Moreover, CT datasets have been effectively used for training deep neural networks for aorta segmentation. In this work, we demonstrate how leveraging CT labels can be used to improve segmentation in ultrasound and hence save manual annotations. METHODS: We introduce CACTUSS: a common anatomical CT-US space that inherits properties from both CT and ultrasound modalities to produce an image in intermediate representation (IR) space. CACTUSS acts as a virtual third modality between CT and US to address the scarcity of annotated ultrasound training data. The generation of IR images is facilitated by re-parametrizing a physics-based US simulator. In CACTUSS we use IR images as training data for ultrasound segmentation, eliminating the need for manual labeling. In addition, an image-to-image translation network is employed for the model's application on real B-modes. RESULTS: The model's performance is evaluated quantitatively for the task of aorta segmentation by comparison against a fully supervised method in terms of Dice Score and diagnostic metrics. CACTUSS outperforms the fully supervised network in segmentation and meets clinical requirements for AAA screening and diagnosis. CONCLUSION: CACTUSS provides a promising approach to improve US segmentation accuracy by leveraging CT labels, reducing the need for manual annotations. We generate IRs that inherit properties from both modalities while preserving the anatomical structure and are optimized for the task of aorta segmentation. Future work involves integrating CACTUSS into robotic ultrasound platforms for automated screening and conducting clinical feasibility studies.


Assuntos
Aneurisma da Aorta Abdominal , Tomografia Computadorizada por Raios X , Ultrassonografia , Humanos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos , Aorta Abdominal/diagnóstico por imagem , Imagem Multimodal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...