Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(8): e54483, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35758159

RESUMO

DNA lesions occur across the genome and constitute a threat to cell viability; however, damage at specific genomic loci has a relatively greater impact on overall genome stability. The ribosomal RNA gene repeats (rDNA) are emerging fragile sites. Recent progress in understanding how the rDNA damage response is organized has highlighted a key role of adaptor proteins. Here, we show that the scaffold tumor suppressor RASSF1A is recruited to rDNA breaks. RASSF1A recruitment to double-strand breaks is mediated by 53BP1 and depends on RASSF1A phosphorylation at Serine 131 by ATM kinase. Employing targeted rDNA damage, we uncover that RASSF1A recruitment promotes local ATM signaling. RASSF1A silencing, a common epigenetic event during malignant transformation, results in persistent breaks, rDNA copy number alterations and decreased cell viability. Overall, we identify a novel role for RASSF1A at rDNA break sites, provide mechanistic insight into how the DNA damage response is organized in a chromatin context, and provide further evidence for how silencing of the RASSF1A tumor suppressor contributes to genome instability.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Reparo do DNA , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Humanos , Fosforilação , Transdução de Sinais/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
2.
Nat Commun ; 9(1): 2280, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891926

RESUMO

Defects in DNA repair can cause various genetic diseases with severe pathological phenotypes. Fanconi anemia (FA) is a rare disease characterized by bone marrow failure, developmental abnormalities, and increased cancer risk that is caused by defective repair of DNA interstrand crosslinks (ICLs). Here, we identify the deubiquitylating enzyme USP48 as synthetic viable for FA-gene deficiencies by performing genome-wide loss-of-function screens across a panel of human haploid isogenic FA-defective cells (FANCA, FANCC, FANCG, FANCI, FANCD2). Thus, as compared to FA-defective cells alone, FA-deficient cells additionally lacking USP48 are less sensitive to genotoxic stress induced by ICL agents and display enhanced, BRCA1-dependent, clearance of DNA damage. Consequently, USP48 inactivation reduces chromosomal instability of FA-defective cells. Our results highlight a role for USP48 in controlling DNA repair and suggest it as a potential target that could be therapeutically exploited for FA.


Assuntos
Reparo do DNA/genética , Reparo do DNA/fisiologia , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteína BRCA1/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Instabilidade Cromossômica , Dano ao DNA , Anemia de Fanconi/terapia , Proteína do Grupo de Complementação A da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação C da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Proteína do Grupo de Complementação C da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética , Proteína do Grupo de Complementação G da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/deficiência , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Técnicas de Inativação de Genes , Terapia Genética , Histonas/metabolismo , Humanos , Mutação , Rad51 Recombinase/metabolismo , Proteases Específicas de Ubiquitina/deficiência , Ubiquitinação
3.
Nat Commun ; 8(1): 1238, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089570

RESUMO

Maintenance of genome integrity via repair of DNA damage is a key biological process required to suppress diseases, including Fanconi anemia (FA). We generated loss-of-function human haploid cells for FA complementation group C (FANCC), a gene encoding a component of the FA core complex, and used genome-wide CRISPR libraries as well as insertional mutagenesis to identify synthetic viable (genetic suppressor) interactions for FA. Here we show that loss of the BLM helicase complex suppresses FANCC phenotypes and we confirm this interaction in cells deficient for FA complementation group I and D2 (FANCI and FANCD2) that function as part of the FA I-D2 complex, indicating that this interaction is not limited to the FA core complex, hence demonstrating that systematic genome-wide screening approaches can be used to reveal genetic viable interactions for DNA repair defects.


Assuntos
Reparo do DNA/genética , Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Anemia de Fanconi/genética , RecQ Helicases/genética , Sistemas CRISPR-Cas , Linhagem Celular , Dano ao DNA , DNA Helicases/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Células HEK293 , Haploidia , Humanos , Mutagênese Insercional , NAD(P)H Desidrogenase (Quinona)/genética
4.
PLoS Genet ; 11(11): e1005645, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26544571

RESUMO

Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Reparo do DNA , Ativação Linfocitária/fisiologia , Proteínas Nucleares/fisiologia , Linfócitos T/imunologia , Fatores de Transcrição/fisiologia , Animais , Colite/imunologia , Dano ao DNA , Proteínas de Ligação a DNA , Imunofenotipagem , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação Genética , Baço/citologia , Baço/metabolismo
5.
Exp Cell Res ; 329(1): 85-93, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25281304

RESUMO

DNA replication is a fundamental process of the cell that ensures accurate duplication of the genetic information and subsequent transfer to daughter cells. Various pertubations, originating from endogenous or exogenous sources, can interfere with proper progression and completion of the replication process, thus threatening genome integrity. Coordinated regulation of replication and the DNA damage response is therefore fundamental to counteract these challenges and ensure accurate synthesis of the genetic material under conditions of replication stress. In this review, we summarize the main sources of replication stress and the DNA damage signaling pathways that are activated in order to preserve genome integrity during DNA replication. We also discuss the association of replication stress and DNA damage in human disease and future perspectives in the field.


Assuntos
Dano ao DNA/genética , Replicação do DNA , Doença/genética , Instabilidade Genômica , Animais , Humanos
6.
DNA Repair (Amst) ; 24: 122-130, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25262557

RESUMO

Unresolved replication intermediates can block the progression of replication forks and become converted into DNA lesions, hence exacerbating genomic instability. The p53-binding protein 1 (53BP1) forms nuclear bodies at sites of unrepaired DNA lesions to shield these regions against erosion, in a manner dependent on the DNA damage kinase ATM. The molecular mechanism by which ATM is activated upon replicative stress to localize the 53BP1 protection complex is unknown. Here we show that the ATM-INteracting protein ATMIN (also known as ASCIZ) is partially required for 53BP1 localization upon replicative stress. Additionally, we demonstrate that ATM activation is impaired in cells lacking ATMIN and we define that ATMIN is required for initiating ATM signaling following replicative stress. Furthermore, loss of ATMIN leads to chromosomal segregation defects. Together these data reveal that chromatin integrity depends on ATMIN upon exposure to replication-induced stress.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Afidicolina/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Ciclo Celular/fisiologia , Segregação de Cromossomos , Dano ao DNA/efeitos dos fármacos , Células HeLa/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
7.
Nat Cell Biol ; 15(8): 967-77, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23851489

RESUMO

The DNA damage response (DDR) pathway and ARF function as barriers to cancer development. Although commonly regarded as operating independently of each other, some studies proposed that ARF is positively regulated by the DDR. Contrary to either scenario, we found that in human oncogene-transformed and cancer cells, ATM suppressed ARF protein levels and activity in a transcription-independent manner. Mechanistically, ATM activated protein phosphatase 1, which antagonized Nek2-dependent phosphorylation of nucleophosmin (NPM), thereby liberating ARF from NPM and rendering it susceptible to degradation by the ULF E3-ubiquitin ligase. In human clinical samples, loss of ATM expression correlated with increased ARF levels and in xenograft and tissue culture models, inhibition of ATM stimulated the tumour-suppressive effects of ARF. These results provide insights into the functional interplay between the DDR and ARF anti-cancer barriers, with implications for tumorigenesis and treatment of advanced tumours.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Fator 1 de Ribosilação do ADP/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Masculino , Camundongos , Quinases Relacionadas a NIMA , Neoplasias/enzimologia , Neoplasias/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Ribossomos/metabolismo , Transdução de Sinais , Transplante Heterólogo , Proteína Supressora de Tumor p14ARF/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Int J Cancer ; 128(8): 1989-95, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20549705

RESUMO

The p14(ARF) is a key tumor suppressor induced mainly by oncogenic stimuli. Although p14(ARF) does not seem to respond to DNA damage, there are very few data regarding its role in other forms of stress, such as heat shock (HS) and oxidative stress (OS). Here, we report that suppression of p14(ARF) increased resistance to cell death when cells were treated with H(2) O(2) or subjected to HS. In this setting, protection from cell death was mediated by elevated levels and activity of ß-catenin, as downregulation of ß-catenin alleviated the protective role of p14(ARF) silencing. Moreover, Hsp70 was shown to regulate ß-catenin protein levels by interacting with p14(ARF) , suggesting that Hsp70, p14(ARF) and ß-catenin form a regulatory network. This novel pathway triggers cell death signals when cells are exposed to HS and OS.


Assuntos
Apoptose , Proteínas de Choque Térmico HSP72/metabolismo , Resposta ao Choque Térmico , Estresse Oxidativo , Proteína Supressora de Tumor p14ARF/metabolismo , beta Catenina/metabolismo , Western Blotting , Proliferação de Células , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP72/genética , Humanos , Imunoprecipitação , Luciferases/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Proteína Supressora de Tumor p14ARF/antagonistas & inibidores , Proteína Supressora de Tumor p14ARF/genética , Regulação para Cima , beta Catenina/genética
9.
J Cell Mol Med ; 14(9): 2264-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20716117

RESUMO

DNA lesions trigger the DNA damage response (DDR) machinery, which protects genomic integrity and sustains cellular survival. Increasing data underline the significance of the integrity of the DDR pathway in chemotherapy response. According to a recent work, persistent exposure of A549 lung carcinoma cells to doxorubicin induces an initial DDR-dependent checkpoint response, followed by a later DDR-independent, but p27(Kip1)-dependent one. Prompted by the above report and to better understand the involvement of the DDR signaling after chemotherapeutic stress, we examined the potential role of the canonical DDR pathway in A549 cells treated with doxorubicin. Exposure of A549 cells, prior to doxorubicin treatment, to ATM, ATR and DNA-PKcs inhibitors either alone or in various combinations, revealed that the earlier documented two-step response was DDR-dependent in both steps. Notably, inhibition of both ATM and ATR or selective inhibition of ATM or DNA-PKcs resulted in cell-cycle re-entry despite the increased levels of p27(Kip1) at all time points analyzed. We further investigated the regulation of p27(Kip1) protein levels in the particular setting. Our results showed that the protein status of p27(Kip1) is mainly determined by p38-MAPK, whereas the role of SKP2 is less significant in the doxoroubicin-treated A549 cells. Cumulatively, we provide evidence that the DNA damage signaling is responsible for the prolonged cell cycle arrest observed after persistent chemotherapy-induced genotoxic stress. In conclusion, precise identification of the molecular mechanisms that are activated during the chemotherapeutic cycles could potentially increase the sensitization to the therapy applied.


Assuntos
Antineoplásicos/farmacologia , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Doxorrubicina/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células A549 , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Cafeína/farmacologia , Cromonas/farmacologia , Dano ao DNA , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Humanos , Morfolinas/farmacologia , Pironas/farmacologia , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Am J Pathol ; 175(1): 376-91, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19541929

RESUMO

Osteosarcoma is the most common primary bone cancer. Mutations of the RB gene represent the most frequent molecular defect in this malignancy. A major consequence of this alteration is that the activity of the key cell cycle regulator E2F1 is unleashed from the inhibitory effects of pRb. Studies in animal models and in human cancers have shown that deregulated E2F1 overexpression possesses either "oncogenic" or "oncosuppressor" properties, depending on the cellular context. To address this issue in osteosarcomas, we examined the status of E2F1 relative to cell proliferation and apoptosis in a clinical setting of human primary osteosarcomas and in E2F1-inducible osteosarcoma cell line models that are wild-type and deficient for p53. Collectively, our data demonstrated that high E2F1 levels exerted a growth-suppressing effect that relied on the integrity of the DNA damage response network. Surprisingly, induction of p73, an established E2F1 target, was also DNA damage response-dependent. Furthermore, a global proteome analysis associated with bioinformatics revealed novel E2F1-regulated genes and potential E2F1-driven signaling networks that could provide useful targets in challenging this aggressive neoplasm by innovative therapies.


Assuntos
Neoplasias Ósseas/metabolismo , Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/fisiologia , Western Blotting , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Proliferação de Células , Criança , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/genética , Eletroforese em Gel Bidimensional , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Osteossarcoma/genética , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/deficiência , Proteínas Supressoras de Tumor/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...