Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552439

RESUMO

Here, by using in vitro and ex vivo approaches, we elucidate the impairment of the hydrogen sulfide (H2S) pathway in vascular complications associated with metabolic syndrome (MetS). In the in vitro model simulating hyperlipidemic/hyperglycemic conditions, we observe significant hallmarks of endothelial dysfunction, including eNOS/NO signaling impairment, ROS overproduction, and a reduction in CSE-derived H2S. Transitioning to an ex vivo model using db/db mice, a genetic MetS model, we identify a downregulation of CBS and CSE expression in aorta, coupled with a diminished L-cysteine-induced vasorelaxation. Molecular mechanisms of eNOS/NO signaling impairment, dissected using pharmacological and molecular approaches, indicate an altered eNOS/Cav-1 ratio, along with reduced Ach- and Iso-induced vasorelaxation and increased L-NIO-induced contraction. In vivo treatment with the H2S donor Erucin ameliorates vascular dysfunction observed in db/db mice without impacting eNOS, further highlighting a specific action on smooth muscle component rather than the endothelium. Analyzing the NO signaling pathway in db/db mice aortas, reduced cGMP levels were detected, implicating a defective sGC/cGMP signaling. In vivo Erucin administration restores cGMP content. This beneficial effect involves an increased sGC activity, due to enzyme persulfidation observed in sGC overexpressed cells, coupled with PDE5 inhibition. In conclusion, our study demonstrates a pivotal role of reduced cGMP levels in impaired vasorelaxation in a murine model of MetS involving an impairment of both H2S and NO signaling. Exogenous H2S supplementation through Erucin represents a promising alternative in MetS therapy, targeting smooth muscle cells and supporting the importance of lifestyle and nutrition in managing MetS.


Assuntos
GMP Cíclico , Sulfeto de Hidrogênio , Síndrome Metabólica , Camundongos Endogâmicos C57BL , Guanilil Ciclase Solúvel , Animais , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , GMP Cíclico/metabolismo , Síndrome Metabólica/metabolismo , Camundongos , Masculino , Guanilil Ciclase Solúvel/metabolismo , Vasodilatação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Humanos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Aorta/efeitos dos fármacos , Aorta/metabolismo , Doenças Vasculares/metabolismo , Modelos Animais de Doenças
2.
Biochem Pharmacol ; 215: 115728, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524208

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) is a gasotransmitter deeply involved in cardiovascular homeostasis and implicated in the myocardial protection against ischemia/reperfusion. The post-translational persulfidation of cysteine residues has been identified as the mechanism through which H2S regulates a plethora of biological targets. Erucin (ERU) is an isothiocyanate produced upon hydrolysis of the glucosinolate glucoerucin, presents in edible plants of Brassicaceae family, such as Eruca sativa Mill., and it has emerged as a slow and long-lasting H2S-donor. AIM: In this study the cardioprotective profile of ERU has been investigated and the action mechanism explored, focusing on the possible role of the recently identified mitochondrial Kv7.4 (mitoKv7.4) potassium channels. RESULTS: Interestingly, ERU showed to release H2S and concentration-dependently protected H9c2 cells against H2O2-induced oxidative damage. Moreover, in in vivo model of myocardial infarct ERU showed protective effects, reducing the extension of ischemic area, the levels of troponin I and increasing the amount of total AnxA1, as well as co-related inflammatory outcomes. Conversely, the pre-treatment with XE991, a blocker of Kv7.4 channels, abolished them. In isolated cardiac mitochondria ERU exhibited the typical profile of a mitochondrial potassium channels opener, in particular, this isothiocyanate produced a mild depolarization of mitochondrial membrane potential, a reduction of calcium accumulation into the matrix and finally a flow of potassium ions. Finally, mitoKv7.4 channels were persulfidated in ERU-treated mitochondria. CONCLUSIONS: ERU modulates the cardiac mitoKv7.4 channels and this mechanism may be relevant for cardioprotective effects.


Assuntos
Sulfeto de Hidrogênio , Traumatismo por Reperfusão Miocárdica , Humanos , Peróxido de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Isotiocianatos/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Canais de Potássio , Mitocôndrias Cardíacas
3.
Redox Biol ; 45: 102040, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174560

RESUMO

Duchenne muscular dystrophy (DMD) is the most frequent X chromosome-linked disease caused by mutations in the gene encoding for dystrophin, leading to progressive and unstoppable degeneration of skeletal muscle tissues. Despite recent advances in the understanding of the molecular processes involved in the pathogenesis of DMD, there is still no cure. In this study, we aim at investigating the potential involvement of the transsulfuration pathway (TSP), and its by-end product namely hydrogen sulfide (H2S), in primary human myoblasts isolated from DMD donors and skeletal muscles of dystrophic (mdx) mice. In myoblasts of DMD donors, we demonstrate that the expression of key genes regulating the H2S production and TSP activity, including cystathionine γ lyase (CSE), cystathionine beta-synthase (CBS), 3 mercaptopyruvate sulfurtransferase (3-MST), cysteine dioxygenase (CDO), cysteine sulfonic acid decarboxylase (CSAD), glutathione synthase (GS) and γ -glutamylcysteine synthetase (γ-GCS) is reduced. Starting from these findings, using Nuclear Magnetic Resonance (NMR) and quantitative Polymerase Chain Reaction (qPCR) we show that the levels of TSP-related metabolites such as methionine, glycine, glutathione, glutamate and taurine, as well as the expression levels of the aforementioned TSP related genes, are significantly reduced in skeletal muscles of mdx mice compared to healthy controls, at both an early (7 weeks) and overt (17 weeks) stage of the disease. Importantly, the treatment with sodium hydrosulfide (NaHS), a commonly used H2S donor, fully recovers the impaired locomotor activity in both 7 and 17 old mdx mice. This is an effect attributable to the reduced expression of pro-inflammatory markers and restoration of autophagy in skeletal muscle tissues. In conclusion, our study uncovers a defective TSP pathway activity in DMD and highlights the role of H2S-donors for novel and safe adjuvant therapy to treat symptoms of DMD.


Assuntos
Distrofia Muscular de Duchenne , Animais , Cistationina gama-Liase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética
4.
Br J Pharmacol ; 172(12): 2961-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25631232

RESUMO

BACKGROUND AND PURPOSE: Hydrogen sulfide (H2 S), an endogenous volatile mediator with pleiotropic functions, promotes vasorelaxation, exerts anti-inflammatory actions and regulates angiogenesis. Previously, the SH-containing angiotensin-converting enzyme inhibitor (ACEI), zofenopril, was identified as being effective in preserving endothelial function and inducing angiogenesis among ACEIs. Based on the H2 S donor property of its active metabolite zofenoprilat, the objective of this study was to evaluate whether zofenoprilat-induced angiogenesis was due to increased H2 S availability. EXPERIMENTAL APPROACH: HUVECs were used for in vitro studies of angiogenesis, whereas the Matrigel plug assay was used for in vivo assessments. KEY RESULTS: Zofenoprilat-treated HUVECs showed an increase in all functional features of the angiogenic process in vitro. As zofenoprilat induced the expression of CSE (cystathionine-γ-lyase) and the continuous production of H2 S, CSE inhibition or silencing blocked the ability of zofenoprilat to induce angiogenesis, both in vitro and in vivo. The molecular mechanisms underlying H2 S/zofenoprilat-induced angiogenesis were dependent on Akt, eNOS and ERK1/2 cascades. ATP-sensitive potassium (KATP ) channels, the molecular target that mediates part of the vascular functions of H2 S, were shown to be involved in the upstream activation of Akt and ERK1/2. Moreover, the up-regulation of fibroblast growth factor-2 was dependent on CSE-derived H2 S response to H2 S and KATP activation. CONCLUSIONS AND IMPLICATIONS: Zofenoprilat induced a constant production of H2 S that stimulated the angiogenic process through a KATP channel/Akt/eNOS/ERK1/2 pathway. Thus, zofenopril can be considered as a pro-angiogenic drug acting through H2 S release and production, useful in cardiovascular pathologies where vascular functions need to be re-established and functional angiogenesis induced.


Assuntos
Indutores da Angiogênese/farmacologia , Captopril/análogos & derivados , Sulfeto de Hidrogênio/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Captopril/farmacologia , Cistationina gama-Liase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Canais KATP/efeitos dos fármacos , Canais KATP/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos
5.
Br J Pharmacol ; 172(6): 1505-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24750035

RESUMO

BACKGROUND AND PURPOSE: Hydrogen sulphide (H2S) is a gaseous mediator strongly involved in cardiovascular homeostasis, where it provokes vasodilatation. Having previously shown that H2 S contributes to testosterone-induced vasorelaxation, here we aim to uncover the mechanisms underlying this effect. EXPERIMENTAL APPROACH: H2 S biosynthesis was evaluated in rat isolated aortic rings following androgen receptor (NR3C4) stimulation. Co-immunoprecipitation and surface plasmon resonance analysis were performed to investigate mechanisms involved in NR3C4 activation. KEY RESULTS: Pretreatment with NR3C4 antagonist nilutamide prevented testosterone-induced increase in H2S and reduced its vasodilator effect. Androgen agonist mesterolone also increased H2S and induced vasodilatation; effects attenuated by the selective cystathionine-γ lyase (CSE) inhibitor propargylglycine. The NR3C4-multicomplex-derived heat shock protein 90 (hsp90) was also involved in this effect; its specific inhibitor geldanamycin strongly reduced testosterone-induced H2S production. Neither progesterone nor 17-ß-oestradiol induced H2S release. Furthermore, we demonstrated that CSE, the main vascular H2S-synthesizing enzyme, is physically associated with the NR3C4/hsp90 complex and the generation of such a ternary system represents a key event leading to CSE activation. Finally, H2S levels in human blood collected from male healthy volunteers were higher than those in female samples. CONCLUSIONS AND IMPLICATIONS: We demonstrated that selective activation of the NR3C4 is essential for H2S biosynthesis within vascular tissue, and this event is based on the formation of a ternary complex between cystathionine-γ lyase, NR3C4and hsp90. This novel molecular mechanism operating in the vasculature, corroborated by higher H2S levels in males, suggests that the L-cysteine/CSE/H2S pathway may be preferentially activated in males leading to gender-specific H2S biosynthesis.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Receptores Androgênicos/metabolismo , Testosterona/farmacologia , Vasodilatação/efeitos dos fármacos , Adulto , Alcinos/farmacologia , Antagonistas de Androgênios/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Feminino , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Imidazolidinas/farmacologia , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Wistar , Receptores Androgênicos/efeitos dos fármacos , Fatores Sexuais , Vasodilatadores/farmacologia
6.
Org Biomol Chem ; 12(28): 5235-42, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24920241

RESUMO

Herein, we report optically pure modified acyclic nucleosides as ideal probes for aptamer modification. These new monomers offer unique advantages in exploring the role played in thrombin inhibition by a single residue modification at key positions of the TBA structure.


Assuntos
Antitrombinas/síntese química , Aptâmeros de Nucleotídeos/síntese química , Nucleosídeos/química , Trombina/antagonistas & inibidores , Antitrombinas/química , Aptâmeros de Nucleotídeos/química , Dicroísmo Circular , Quadruplex G , Modelos Moleculares , Mimetismo Molecular , Rotação Ocular , Estereoisomerismo , Termodinâmica , Trombina/química
7.
Br J Pharmacol ; 168(2): 411-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22957757

RESUMO

BACKGROUND AND PURPOSE: Proteinase-activated receptors (PARs) and toll-like receptors (TLRs) are involved in innate immune responses. The aim of this study was to evaluate the possible cross-talk between PAR(2) and TLR4 in vessels in physiological condition and how it varies following stimulation of TLR4 by using in vivo and ex vivo models. EXPERIMENTAL APPROACH: Thoracic aortas were harvested from both naïve and endotoxaemic rats for in vitro studies. Arterial blood pressure was monitored in anaesthetized rats in vivo. LPS was used as a TLR4 agonist while PAR(2) activating peptide (AP) was used as a PAR(2) agonist. Aortas harvested from TLR4(-/-) mice were also used to characterize the PAR(2) response. KEY RESULTS: PAR(2) , but not TLR4, expression was enhanced in aortas of endotoxaemic rats. PAR(2) AP-induced vasorelaxation was increased in aortic rings of LPS-treated rats. TLR4 inhibitors, curcumine and resveratrol, reduced PAR(2) AP-induced vasorelaxation and PAR(2) AP-induced hypotension in both naïve and endotoxaemic rats. Finally, in aortic rings from TLR4(-/-) mice, the expression of PAR(2) was reduced and the PAR(2) AP-induced vasodilatation impaired compared with those from wild-type mice and both resveratrol and curcumine were ineffective. CONCLUSIONS AND IMPLICATIONS: Cross-talk between PAR(2) and TLR4 contributes to vascular homeostasis.


Assuntos
Aorta Torácica/fisiologia , Receptor PAR-2/fisiologia , Receptor 4 Toll-Like/fisiologia , Animais , Hipotensão/induzido quimicamente , Hipotensão/fisiopatologia , Técnicas In Vitro , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligopeptídeos , Ratos , Ratos Wistar , Vasodilatação/fisiologia
8.
Br J Pharmacol ; 155(5): 673-80, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18641671

RESUMO

BACKGROUND AND PURPOSE: Hydrogen sulphide (H2S) has been involved in cardiovascular homoeostasis but data about its role in animal models of diabetic pathology are still lacking. Here, we have analysed H2S signalling in a genetic model of diabetes, the non-obese diabetic (NOD) mice. EXPERIMENTAL APPROACH: NOD mice exhibit a progressive endothelial dysfunction characterized by a reduced reactivity of blood vessels as diabetes develops. NOD mice were divided into three groups according to different glycosuria values: NOD I, NOD II and NOD III. Age-matched non-obese resistant (NOR) mice were used as controls. H(2)S levels in plasma and aortic tissue were measured. Functional studies in aorta were carried out in isolated organ baths using both an exogenous source of H2S (NaHS) and the metabolic precursor (L-cysteine). Real time PCR and western blot analysis were also carried out on aortic tissues. KEY RESULTS: NOD mice exhibited a progressive reduction of H2S plasma levels, which paralleled disease severity. L-cysteine-induced H2S production by aortic tissues was also progressively reduced. L-cysteine-induced vasorelaxation was significantly reduced in NOD mice while NaHS-induced relaxation was unaffected. ODQ (guanylate cyclase inhibitor), L-NAME (NO synthase inhibitor) or PAG, an inhibitor of cystathionine-gamma-lyase (CSE) inhibited H2S production induced by L-cysteine. CONCLUSIONS AND IMPLICATIONS: In NOD mice, endogenous H2S production is significantly impaired. Also, the ability of isolated aorta to respond to exogenous H2S is enhanced and endothelium-derived NO appears to be involved in the enzymatic conversion of L-cysteine into H2S.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Endotélio Vascular/metabolismo , Sulfeto de Hidrogênio/metabolismo , Animais , Aorta/metabolismo , Glicemia/metabolismo , Western Blotting , Cisteína/metabolismo , Cisteína/farmacologia , Diabetes Mellitus Tipo 1/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Feminino , Sulfeto de Hidrogênio/sangue , Sulfeto de Hidrogênio/farmacologia , Camundongos , Camundongos Endogâmicos NOD , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos
9.
Br J Pharmacol ; 150(5): 577-85, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17245372

RESUMO

BACKGROUND AND PURPOSE: Neuroblastoma is the most common solid tumour in infants characterized by a high resistance to apoptosis. Recently, the cyclo-oxygenase pathway has been considered a potential target in the treatment of different kinds of tumours. The aim of the present work was to investigate a possible relationship between cyclo-oxygenase pathway and stauroporine-induced apoptosis in the neuroblastoma cell line SH-SY5Y. EXPERIMENTAL APPROACH: Cellular viability was measured by release of LDH. DNA fragmentation was visualized by electrophoresis on agarose gel containing ethidium bromide. Cyclo-oxygenase activity was measured in microsomal fractions obtained from cells by quantification of its final product PGE2 by RIA. Caspase-3 activity was measured fluorimetrically and Western blot analysis was performed to assess cytochrome c expression. KEY RESULTS: We have found that staurosporine (500 nM) induced cellular death in a time-dependent manner in SH-SY5Y human neuroblastoma cells. Cyclo-oxygenase enzymatic activity was present in SH-SY5Y human neuroblastoma cells under basal conditions and pharmacological experiments using COX inhibitors indicate that cyclo-oxygenase-1 and cyclo-oxygenase-3 are the active isoforms in these cells. Co-incubation of SH-SY5Y cells with staurosporine (500 nM) and acetaminophen for 24 h potentiated staurosporine-mediated cellular death in a concentration-dependent manner. This process is mediated by an increase in cytochrome c release and caspase 3 activation and is prevented by N-acetylcysteine or the superoxide dismutase mimetic, MnTBAP. CONCLUSIONS AND IMPLICATIONS: Acetaminophen potentiates staurosporine-mediated neuroblastoma cell death. The mechanism of action of acetaminophen seems to be related to production of reactive oxygen species and decreased intracellular glutathione levels.


Assuntos
Acetaminofen/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Neuroblastoma/fisiopatologia , Estaurosporina/farmacologia , Acetilcisteína/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Citocromos c/metabolismo , Dinoprostona/metabolismo , Dissulfiram/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Glutationa/metabolismo , Humanos , Metaloporfirinas/farmacologia , Neuroblastoma/enzimologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...